• Title/Summary/Keyword: 곡선 접합

Search Result 162, Processing Time 0.032 seconds

An Analytical Study on the Nonlinear Behavior of Double Angle Connections Subjected to Shear (전단력을 받는 더블 앵글 접합부의 비선형 거동에 관한 해석적 연구)

  • Lee, Soo-Kueon;Hong, Kap-Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.65-73
    • /
    • 2000
  • The behavior of double angle connections is analyzed by 3D finite element method using ABAQUS(ver 5.8). Moment-rotation curves for the connections are generated, as well as stress distribution for angle and bolt. Double angle connections have various angle thickness, gage distance and number of bolt. Parameters, such as initial stiffness, plastic tiffness, reference load and curve shape parameter were obtained by regression method using Richard's formula. These parameter lead to predict nonlinear behavior of double angle connection. Design curves giving the parameters of the moment-rotation curves are generated. These parameters are primarily a function of the angle thickness, gage distance and the number of bolts in the connection. Using these parameters, connection moment and its ratio to the full plastic moment capacity Mp of the beam are calculated.

  • PDF

An Analytical Model for Calculating Initial Stiffnesses of Double Angle Connections (더블앵글 접합부의 초기강성 산정을 위한 해석모델)

  • Yang, Jae-Guen;Kim, Ki-Hwan;Kim, Ho-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.55-63
    • /
    • 2004
  • Double angle connections are commonly used for the construction of the low-rise steel framed buildings. Several experimental tests lave been conducted to investigate the effect of the number of bolts on the rotational stiffness of a double angle connection. Several parameters are obtained by performing regression analysis. An analytical model has been introduced to calculate the initial stiffness of a double angle connection in this research.

  • PDF

Allow for Illumination Variation Stereo Matching Method Based On Curve Fitting (조명변화를 고려한 곡선접합 기반의 스테레오 매칭 기법)

  • Kim, Dae-Keun;Shin, Kwang-Mu;Chung, Ki-Dong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.418-420
    • /
    • 2012
  • 스테레오 매칭의 지역적 방법은 구현의 용이성과 낮은 계산복잡도로 인하여 많은 연구가 진행되고 있다. 하지만 대부분의 지역적 방법들은 영상이 외부환경에 변형되었을 때의 경우를 고려하지 않고 있기 때문에, 외부환경에 의해 많이 변형된 영상에 대해서는 제대로 된 변이 정보를 추출해내지 못한다. 본 논문에서는 양쪽 영상에서 곡선접합을 이용하여 서로 대응되는 영역을 찾는 스테레오 매칭 기법을 제안한다. 제안하는 기법은 조명과 같은 외부요소에 강인한 특징을 가진다. 이 기법은 전 처리나 후처리 과정에서 부가적인 작업의 수행 없이 기법 자체만으로 외부요소에 대한 보상을 실행한다는 면에서 장점을 가진다. 비록 다양한 영상에서 변이를 추출하는 실험 결과, 거시적인 특성을 반영하는 곡선접합만으로도 조명에 의해 변형된 영상에 대해서 변이결과를 추출해내었다. 차후 미시적인 방법과의 결합을 통해, 변이정보의 추출의 정확도를 올릴 수 있을 것 이라고 기대된다.

Simulation Study on Heterojunction InGaP/InAlGaP Solar Cell (InGaP/InAlGaP 이종 접합구조 태양전지 시뮬레이션 연구)

  • Kim, Junghwan
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.162-167
    • /
    • 2013
  • An epitaxial layer structure for heterojunction p-InGaP/N-InAlGaP solar cell has proposed. Simulation for current density-voltage characteristics has been performed on p-InGaP/N-InAlGaP structure and the simulation results were compared with p-InGaP/p-GaAs/N-InAlGaP structure and homogeneous InGaP pn junction structure. The simulation result showed that the maximum output power and fill factor have greatly increased by replacing n-InGaP with N-InAlGaP. The thicknesses of p-InGaP and n-InAlGaP were optimized for the epitaxial layer structure of p-InGaP/N-InAlGaP.

Study on Behavior Characteristics of L-Type Flange Bolt Connection for Supporting Structures of Wind Turbines (풍력터빈 지지구조물 L형 플랜지 볼트 접합부의 거동 특성에 관한 연구)

  • Jung, Dae-Jin;Hong, Kwan-Young;Choi, Ik-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.279-286
    • /
    • 2021
  • In this study, we investigated the behavior characteristics of the L-type flange bolt connection, which is used to connect upper and lower flanges having L-type ring sections, by bolts. This connection is mainly used in domestic wind turbine structures, wherein it is a vital component as any imperfection could cause the collapse of the entire structural system. Therefore, understanding the behavior characteristics of the L-type flange bolt connection is imperative. In this study, the connection's response to external force was simulated using finite element (FE) analysis and the FE model was idealized to behave as a single L-type bolt flange. The variation in the bolt tension and the L-type flange stress were analyzed to understand the behavior characteristics of the connection. Moreover, the bolt-load function models proposed by Petersen, Schmidt/Neuper and VDI 2230, theoretically expressing a relation between bolt tension and external force, were compared to evaluate the suitability of the FE analysis and analyze the significant behavior characteristics of the connection. Furthermore, the changes in the bolt-load curve due to the variations in the partial dimensions of the L-type flange bolt connection were analyzed.

Nondestructive Evaluation of Nanostructured Thin Film System Using Scanning Acoustic Microscopy (초음파현미경을 이용한 나노 구조 박막 시스템의 비파괴평가)

  • Miyasaka, Chiaki;Park, Ik-Keun;Park, Tae-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.437-443
    • /
    • 2010
  • In recent years, as nano scale structured thin film technology has emerged in various fields such as the materials, biomedical and acoustic sciences, the quantitative nondestructive adhesion evaluation of thin film interfaces using ultra high frequency scanning acoustic microscopy(SAM) has become an important issue in terms of the longevity and durability of thin film devices. In this study, an effective technique for investigating the interfaces of nano scale structured thin film systems is described, based on the focusing of ultrasonic waves, the generation of leaky surface acoustic waves(LSAWs), V(z) curve simulation and ultra high frequency acoustical imaging_ Computer simulations of the V(z) curve were performed to estimate the sensitivity of detection of micro flaws(i.e., delamination) in a thin film system. Finally, experiments were conducted to confirm that a SAM system operating at a frequency of 1 GHz can be useful to visualize the micro flaws in nano structured thin film systems.

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

Evaluation of RVE Suitability Based on Exponential Curve Fitting of a Probability Distribution Function (확률 분포 함수의 지수 곡선 접합을 이용한 RVE 적합성 평가)

  • Chung, Sang-Yeop;Yun, Tae Sup;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.425-431
    • /
    • 2010
  • The phase distribution in a multi-phase material strongly affects its material properties. Therefore, a proper method to describe the phase distribution of a material is needed. In this research, probability distribution functions, two-point correlation and lineal-path functions, are used to represent the probabilistic phase distributions of a material. The probability distribution function is calculated using a numerical method and is described as an analytical form via exponential curve fitting with three parameters. Application of analytical form of probability distribution function is investigated using two-phase polycrystalline solids and soil samples. It is confirmed that the probability distribution functions can be represented as an exponential form using curve fitting which helps identifying the applicability of a representative volume element(RVE).