• Title/Summary/Keyword: 곡률효과

Search Result 200, Processing Time 0.023 seconds

Structural Performance Investigation for the Reinforced Concrete Frames Deteriorated by the Reinforcement Corrosion (철근부식에 의한 철근콘크리트골조의 구조성능분석)

  • Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.563-570
    • /
    • 2015
  • The existing research on the damage detection method for building structures has considered the damages from the excessive loadings such as the earthquake. However, the structural performance of building structures could be reduced due to the deterioration based on the chloride, carbonation during the long-term time. Thus, to effectively manage the healthiness of structures, the deterioration influences on the structures should be checked. In this study, the corrosion of rebars by the chloride is considered as the deterioration factor. To consider the structural performance reduction of the corroded rebars, the yield strength, cross-sectional area, rupture strain of rebars and the compressive strength of cover concrete based on the corrosion level are estimated. These properties of rebars and cover concrete are used for the procedure to evaluate the structural performance reduction of structural member level and the building level. The moment-curvature analysis is performed to evaluate the structural performance reduction of structural member level. Also, the eigenvalue analysis and the pushover analysis are performed to investigate the natural period and mode shape and the strength and deformation performance of buildings, respectively.

Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building I. Theoretical Derivations (원전 격납건물 돔 텐던의 축대칭 모델링 기법 I. 이론식의 유도)

  • Jeon Se-Jin;Chung Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.521-526
    • /
    • 2005
  • Prestressing tendons in a nuclear containment building dome are non-axisymmetrically arranged in most cases. However, simple axisymmetric modeling of the containment has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as an internal pressure. In this case, the axisymmetric approximation is required for the actual tendon arrangements in the dome. Some procedures are proposed that can implement the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in 3 or 2-ways depending on a containment type, are converted into an equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, equivalent load method and initial stress method are devised and the corresponding loads or stresses are derived in terms of the axisymmetric model. In a companion paper, the proposed schemes are applied into CANDU and KSNP(Korean Standard Nuclear Power Plant) type containments and are verified through some numerical examples comparing the analysis results with those of the actual 3-dimensional model.

Development of the Preliminary Cost Estimate Method for the Free-Form Building Facade Trade in Conjunction with the Panel Optimization Algorithm Process (곡면 최적화 알고리즘을 활용한 비정형 건축물 외장공사비 개산견적에 관한 연구)

  • Lim, Jang Sik;Ock, Jong Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.95-106
    • /
    • 2014
  • The outer surfaces of free form buildings contain panels with two-directional curvatures. To construct these panels, complex geometric surfaces should be divided into forms and sizes that can be manufactured and constructed efficiently. Because the bigger the curvatures of these panel, the more expensive the construction costs, these complex curvatures should go through optimal process of reinterpretation to minimize the curved surfaces with complex two-directional curvatures, which is called panel optimization. Small construction and design companies have trouble in calculating even rough estimate and cannot adjust expected construction cost of the panels based on comparison of design alternatives in conjunction with panel optimization process due to lack of knowledge and experience. This study conducts the research that can support designers' cost decision-making in the design stage of the free form buildings with respect to the panel optimization process. A 3D commercial application specialized to modeling free form shapes is used for the purpose.

Experimental Study on Failure Characteristics of Riprap Revetments in Meandering Channel (만곡부 흐름특성을 고려한 사석호안공 붕괴 수리실험 연구)

  • Bae, Deok-Won;Kim, Hyung-Jun;Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.696-696
    • /
    • 2012
  • 호안은 유수의 침입으로부터 제방 및 하안의 침식 피해를 방지하기 위해 제방에 설치되는 구조물이다. 침식에 의한 제방 및 호안의 대표적인 붕괴특성 중에는 만곡부, 하천 급경사, 지형의 간섭효과 등이 있다. 특히, 만곡부는 원심력, 2차류 등에 의한 수위상승 및 유속증가로 제체에 응력 집중이 발생되어 안정성 저하를 유발할 수 있다. 또한, 만곡부의 흐름 방향전환 현상은 하도내 통수능 저하를 발생시켜 홍수피해를 가중시킬 수 있다. 따라서 하천특성상 만곡부에 의해 발생할 수 있는 홍수피해 요소를 저감시킬 수 있도록 적합한 피해저감대책을 마련할 필요가 있다. 제방의 보강대책으로서 활용되고 있는 호안은 역학적인 측면에서 외력과 저항력의 크기에 따라 안정성이 평가되어야 하며 지역여건 등에 따른 만곡부의 수위상승 및 제방 침식 등을 고려한 설계가 수행되어야 한다. 국내 실무에서 적용되고 있는 호안설계방법은 하천설계기준 해설(2009)을 참고하고 있는데, 흐름현상 및 만곡부 특성 등에 대하여 경험과 이론의 양면을 고려한 설계를 수행하도록 제안하고 있다. 이는 호안 안정성에 대한 역학적 검토 방법의 한계로 비합리적 설계가 될 우려가 있다. 따라서 만곡부에 의한 유속 및 소류력 등 흐름특성을 고려한 정량적인 평가기법이 요구되는 상황이다. 본 연구에서는 수리실험을 통해 만곡에 의한 흐름영향과 수리학적 거동 및 설계요소를 파악하고자 만곡부에 사석호안공을 설치하여 흐름전환 및 유속변화에 따른 사석호안공의 이탈현상을 재현하였다. 실험수로는 곡률반경( )이 4.5 m인 만곡부가 3개소 발생하는 폭 2.3 m, 길이 25 m의 다중 사행수로 형태이다. 실험수로 우안의 1V:2H 경사면에 10, 20, 30, 40, 50 mm 사석을 크기별로 설치하여 만곡에 의한 유속변화 등 흐름현상과 호안공 이탈을 관찰하였다. 수리실험은 고정상으로 수행되었으며 정상류 흐름조건에서 공급유량별 하류단 수위 조절을 통해 만곡부내 호안 공 이탈을 발생시키는 설계인자를 도출하고자 유속과 수심을 측정하였다. 실험결과를 바탕으로 사석호안공 설계시 1차원 접근유속에 만곡 영향을 고려하여 대표유속으로 적용하는 방법의 특성을 파악하고, 사석호안공의 이탈유속과 만곡에 의한 흐름특성간의 상관관계를 분석하여 제원결정기법을 제안하였다.

  • PDF

A Study for the Stability Investigation of Three Parallel Tunnels Using Scaled Model Tests (삼병렬 터널의 안정성 검토를 위한 모형실험 연구)

  • Kim, Jong-Woo;Bae, Woo-Seok
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.300-311
    • /
    • 2008
  • In this study, scaled model tests were performed to investigate the stability of three parallel tunnels. Seven types of test models which had respectively different pillar widths, tunnel sectional shapes, support conditions and ground conditions were experimented, where crack initiating pressures and deformation behaviors around tunnels were investigated. In order to evaluate the effect of pillar widths on stability, various models were experimented. As results, the models with shallower pillar widths proved to be unstable because of lower crack initiating pressures and more tunnel convergences than the models with thicker pillar widths. In order to find the effect of tunnel sectional shape on stability, the models with arched, semi-arched and rectangular tunnels were experimented. Among them rectangular tunnel model was the most unstable, where the arched tunnel model with small radius of roof curvature was more stable than semi-arched one. The model with rockbolt showed higher crack initiating pressure and less roof lowering than the unsupported model. The deformation behaviors of tunnels in the anisotropic ground model were quite different from those in the isotropic ground model. Futhermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

Free Vibrations of Arches in Cartesian Coordinates (직교좌표계에 의한 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Yong-Soo;Kim, Il-Jung;Choi, Kou-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.970-978
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in Cartesian coordinates rather than in polar coordinates. in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. The convergent efficiency is highly improved under the newly derived differential equations in Cartesian coordinates. The lowest four natural frequency parameters are reported, with and without the rotatory inertia, as functions of three non-dimensional system parameters the rise to chord length ratio. the span length to chord length ratio, and the slenderness ratio. Also typical mode shapes of vibrating arches are presented.

Nonlinear Analysis of RC Bridge Columns for Ductility Evaluation (철근콘크리트 교각의 연성도 평가를 위한 비선형해석)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.39-49
    • /
    • 2003
  • This research is a part of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. A nonlinear analytical method is proposed to obtain moment-curvature relationship and lateral load-displacement relationship. Various analytical models that contribute seismic behavior of reinforced concrete bridge columns are adopted and modified by comparing quasi-static test results of reinforced concrete columns with spirals of circular hoops. The analysis adopts confined concrete model, longitudinal reinforcement test result of reinforced concrete columns with spirals or circular hoops. The analysis adopts confined concrete model, etc. The results obtained using the propose analytical method agree well with test results and give conservative estimations particularly for deformation capacity and ductility.

Improving the Sensitivity of an Ultraviolet Optical Sensor Based on a Fiber Bragg Grating by Coating With a Photoresponsive Material (광반응 재료가 코팅된 단주기 광섬유격자 기반 자외선센서의 광민감도 향상 연구)

  • Kim, Woo Young;Kim, Chan-Young;Kim, Hyun-Kyoung;Ahn, Tae-Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • This study was focused on developing an optical sensor that monitors ultraviolet (UV) light. Recently, we proposed and demonstrated a novel, highly sensitive UV sensor based on a fiber Bragg grating (FBG). To ensure that the incident UV light is focused on the FBG surface, the sensor was coated with an azobenzene polymer material that acts as a UV-induced stretchable functional material, in combination with a cylindrical focal lens. In this study we have improved the sensitivity of the sensor by employing a cylindrical focal mirror as a curved reflector, to refocus the UV light passing through the FBG. We considered the performance of several different types of reflectors and chose the optimal radius of curvature for the reflector. Compared to the UV sensor without an auxiliary device, the sensitivity of the FBG sensor with a focal lens and a curved reflector was 15 times as high.

Characteristics of Flow Field and IR of Double Serpentine Nozzle Plume for Varying Cross Sectional Areas and Flight Conditions in UCAV (Double Serpentine 노즐의 단면적과 비행조건 변화에 따른 UCAV의 플룸 유동장 및 IR 특성 연구)

  • Lee, Yu-Ryeol;Lee, Ji-Won;Shin, Chang-Min;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.689-698
    • /
    • 2021
  • The development of modern warfare detection technology is increasingly threatening the survivability of aircraft. Among them, IR-seeking missiles greatly affect the survivability of aircraft and are a main factor that reduces the success rate of aircraft missions. In order to increase aircraft survivability, studies on shape-modifying nozzles with added curvature are being actively conducted. In this study, we selected a double serpentine nozzle among shape-modifying nozzles to increase aircraft survivability. We then investigated the effects of the location of the maximum area change rate of the nozzle. It was confirmed that the location of the change rate of area affects the thrust and exit temperature of the nozzle. In addition, it was shown that the thrust penalty was reduced as the position of the change rate of the maximum area was located at the rear of the nozzle.

Computational Model for Hydrodynamic Pressure on Radial Gates during Earthquakes (레디얼 게이트에 작용하는 지진 동수압 계산 모형)

  • Phan, Hoang Nam;Lee, Jeeho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.323-331
    • /
    • 2019
  • In this study, a computational model approach for the modeling of hydrodynamic pressures acting on radial gates during strong earthquakes is proposed. The use of the dynamic layering method with the Arbitrary Lagrangian Eulerian (ALE) algorithm and the SIMPLE method for simulating free reservoir surface flow in addition to moving boundary interfaces between the fluid domain and a structure due to earthquake excitation are suggested. The verification and validation of the proposed approach are realized by comparisons performed using the renowned formulation derived by the experimental results for vertical and inclined dam surfaces subjected to earthquake excitation. A parameter study for the truncated lengths of the two-dimensional fluid domain demonstrates that twice the water level leads to efficient and converged computational results. Finally, numerical simulations for large radial gates with different curvatures subjected to two strong earthquakes are successfully performed using the suggested computational model.