• Title/Summary/Keyword: 고형환경시료

Search Result 45, Processing Time 0.037 seconds

Development and Application of Acute Bioassay Method on Solid Samples using Bioluminescence Producing Bacteria (박테리아 발광 특성을 이용한 고형시료 급성 독성법 연구 및 적용)

  • Ko, Kyung-Seok;Kong, In-Chul;Jung, Hong-Gyung;Ro, Yul
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.46-52
    • /
    • 2007
  • A toxicity method using bioluminescence producing bacteria, Escherichia coli DH5 RB1436, was developed and applied on solid environmental samples. In the assay, 1 g soil sample was mixed with 4 ml RB1436 strain. Sets amended with p-buffer were employed for control in soil test, showing approximately 108% of sets amended with combusted soils. Measurable differences were observed between relatively more polluted groups (HP) and less polluted groups (LP) of soil samples, showing average toxicity 43 and 26%, respectively, in direct soil toxicity test. $EC_{50}$'s for all soil groups appeared in the range of $1.8{\sim}4.6\;g$, but those of sediments from dam reservoir and refuses were below 0.22 g. This developed bioassay should prove useful as a screening test for toxicity in various types of environmental solid samples.

Biodegradation Potential of Hexadecane by Sewage Foam (폐수거품에 의한 hexadecane의 생분해 가능성 평가)

  • 정근욱
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.69-76
    • /
    • 2000
  • 폐수거품은 전 세계의 폐수처리장에서 악취생산과 BOD의 증가 및 부유고형물의 원인과 같은 수많은 문제들을 야기시킨다. Actinomycetes가 폐수거품에 존재하는 주요 미 생물군으로 알려져있다. Hexadecane은 폐수, 토양, 바닷물과 같은 자연환경에서 오염물질로 고려되는 복잡한 기름 성분의 대표적인 구성성분이다. Hexadecane은 폐수로부터 얻어진 폐수거품에 의한 분해가능성을 평가하기 위한 대표적인 모델 화합물로서 사용되었다. Gas chromatography (GC)/mass (MS)가 시료중에 있는 hexadecane의 분석을 위해 사용되었다. 본 연구를 통해서, hexadecane은 폐수거품에 의해 분해될 수 있는 것으로 사료된다. 멸균시킨 폐수거품시료를 포함하고 있는 control시료에서, hexadecane은 거의 분해되지 않았다. 반면에, 같은 방법에 의해 멸균되지 않은 폐수시료에서, hexadecane은 급속히 분해되었다. 덧붙여서, 농축폐수거품이 들어있는 시료는 3주 동안 건조된 폐수거품의 시료보다 hexadecane을 분해하는 데 더욱 효과가 높았다. 그러나, 3주 후에는 농축폐수거품의 시료에 남아있는 hexadecane의 농도는 건조된 폐수거품시료의 농도와 유사하였다. 요약컨대, 농축된 폐수거품시료와 건조된 폐수거품시료는 control시료와 비교했을 때, hexadecane의 급속한 분해를 보여주었다. 그러므로 본 연구의 실험결과를 통해서 건조된 폐수거품시료가 hexadecane을 비롯한 다른 chemical들로 오염된 장소를 정화하는 데 실제적으로 적용될 수 있을 것으로 사료된다.

  • PDF

A Study on Combustion Characteristics for Dry Food Waste (음식폐기물의 고형연료화를 위한 연소특성 연구)

  • Sang, Byoungchan;Lee, Seungjeong;Lee, Doyeon;Ohm, Taein
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.101-108
    • /
    • 2022
  • This study analyzed the physicochemical properties and combustion characteristics of dry food waste to evaluate the possibility of using food waste as a solid refuse fuel (SRF). The characteristics of dry food waste as a fuel were analyzed by comparing the difference in properties with SRF, and the combustion characteristics after conversion into fuel were identified. Ultimate analysis, proximate analysis, calorific value analysis, and TGA analysis were conducted using two types of food waste and two types of SRF, and the following results were obtained. The moisture content and ash content of dry food waste were 1.7~10.0 wt.% and 7.8~11.7 wt.%, respectively, which satisfied the quality standards for SRF. The low calorific value of dry food waste was 4,000 ~ 4,720 kcal/kg, which was higher than the quality standard of 3,500 kcal/kg for SRF. As a result of TGA analysis of dry food waste, the combustion reaction started at about 200 ℃ and the highest burning rate was at about 500 ℃. After moisture evaporation between 100 and 200 ℃, initial volatile matter, carbon and residual volatile matter were released and burned between 200 and 500 ℃. Based on the high calorific value and low moisture and ash content of dry food waste, it is considered that it is possible to convert dry food waste into SRF through the application of efficient drying technology and strict quality standard inspection in the future.

Feasibility Study on Use of Livestock Manure as Solid Refuse Fuel by Torrefaction Method (반탄화 기술을 이용한 가축분뇨의 고형연료화 가능성 연구)

  • Lee, Yongho;Sanjusren, Oyun-Erdene;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.560-571
    • /
    • 2019
  • In the study, used torrefaction method to make sample from organic waste of livestock manure for Biomass-solid refuse fuel feasibility study of torrefied materials. Fallen leaves and sawdust added in torrefaction methods with livestock manure, that additives were used to improve the lower calorific value of livestock manure. During the torrefaction experiment, the reaction temperature was varied from $200^{\circ}C$ to $260^{\circ}C$ and $20^{\circ}C$ to prepare a sample. The reaction time was divided into 15, 30 and 45min to determine the effect of the experimental conditions on the torrified products. The additives were mixed at a ratio of 9:1 and 8:2 (Cow manure: additive) relative to the livestock manure. Through this experiment, it was obtained 3,500 kcal/kg standard product of solid fuel produced in Korea and improved product was obtained by adding additives.

A Study on Characteristics of Leachability and Compressive Strength of Incinerator Fly Ash, Cement and Waste Stone Powder by Solidification (산업폐기물 소각장 비산재의 시멘트 및 폐석분 고형화시 압축강도 및 용출특성)

  • Jung, Ho-Young;Kim, Young-Ju;Kim, Ji-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.560-566
    • /
    • 2008
  • In this paper, the solidification behaviour and compressive strength of fly ash, cement, and waste stone powder were studied each separately and with addition of each in different proportions. And also, we assessed stabilizing ability of waste stone powder in cement which was added in fly ash. The particle size of waste stone powder was found smaller than the fly ash and cement particle sizes. Moreover, when mixing all(fly ash, cement, and waste stone powder) showed distinctive crystal structure, and improved stiffness. In case of mixing fly ash, cement and waste stone powder in different proportions, the compressive strength was exceeded to the predicted compressive strength of 10 kgf/cm$^2$. The XRD analysis showed high contents of CaO in fly ash and SiO$_2$ in case of waste stone powder sample. Heavy metal emission experiment showed the 3mg/L of Pb after 14 days of mixing 150 kg/m$^3$ of cement with the 80$\sim$100 kg/m$^3$ of waste stone powder, which is fulfilling the National Waste Management Policy.

A Study on the Characteristics of Coffee Ground(CG)-RDF by Using Different Drying Method (건조법에 따른 커피박 고형연료의 특성 고찰 연구)

  • Kim, Sang-bin;Ha, Jin-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.451-457
    • /
    • 2019
  • In this study, the characteristics of coffee grounds were reviewed by making them from solid fuel through heat-drying and oil-drying method. The differences in the higher calorific power by each dried sample were compared. And industrial analysis using the thermogravimetric analyzer was considered for applicability to organic waste and oily samples. Before and after drying, the surface of the specimen was observed with SEM equipment and the ingredients were measured through the EDS equipment. As a result, no other hazardous substances, such as heavy metals, were measured. Next, The differences between thermal decomposition and combustion reactions were considered through the TG and DTG curves. As a result, it is that the oil-dried coffee grounds is longer to burn than the heat-dried coffee grounds. Finally, the combustion gases emitted through the thermogravimetric analyzer were collected and the carbon monoxide and carbon dioxide performed qualitative and quantitative analysis using GC over time.

Potential Element Retention by Weathered Pulverised Fuel Ash : I. Batch Leaching Experiments (풍화 석탄연소 고형폐기물(Pulverised Fuel Ash)의 중금속 제거가능성 : I. 뱃치 용출실험)

  • Lee, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.251-257
    • /
    • 1995
  • Three PEA (Pulverised Fuel Ash) samples, which were fresh, 17 and some 40 years weathered, were collected from two major British power plants. Batch leaching tests with these samples using distilled water and simulated industrial leachate showed higher amounts of element liberation from fresh ash, including Ca, Na, K, S (as $SO^{2-}_4$, $Cr_{total}$, Cu, Li Ni, Mo and CI and this seems to indicate their surface association and easier dissolution when contact with water. On the contrary Mg, Al, Ba, Si, V, As and Se do not show such readily leachable concentrations and these elements might be more associated with glass fraction in PFA particle rather than surface. Although element concentrations in the weathered ash are much lower than those in the initial leachate from the fresh ash, elements are still detected as resonable concentrations, with rather constant levels and this seems to demonstrate the element release from unstable glass phase of PFA particle. Fe, Ca, $Cr_{total}$, Cu, Ni, Zn and Hg were removed from the synthetic leachate by PFA and this is also confirmed by gain in solid PFA. The order of element retention is Meaford weathered ash > Drax weathered ash > Drax fresh ash in decreasing order and this conforms with the degree of weathering. Namely, the more wethered, the more wethered, the more effective in metal retention from the synthetic leachate.

  • PDF

Analysis of Dioxins and Furans from Bottom Ash Produced in an Municipal Solid Waste Incinerator (도시 소각로 시설의 고형 쓰레기 연소 후 생성된 바닥재 시료에 대한 다이옥신과 퓨란류의 분석)

  • Chang, Yoon-Seok;Hong, JongKi;Kim, Jin-Young
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.513-523
    • /
    • 1995
  • Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are the most concerned toxic organic pollutants to human. Because of their extremely high toxicity and uncertain genotoxic potential, their determination in environmental and biological samples is of great interest. Municipal solid waste incinerator facilities have been reported as the major contributors of dioxins and furans to the environment, and their formation from combustion is a universal phenomenon, everywhere. In this study dioxins and furans were analyzed from the bottom ash produced during combustion in an municipal waste incinerator located in Seoul. The EPA method was modified for sample pretreatment: the soxhlet method was used for extraction and clean-up procedures were performed by using silica and basic alumina, excluding active-carbon. The extract was then analyzed by HRGC/HRMS. A general trend of increase in the amounts of 6∼7 chlorine-substituted dioxins and furans was observed. Total dioxins, furans and 2,3,7,8-TCDD were determined as 8.05 ng/g, 4.75 ng/g, and 6.93 pg/g, respectively.

  • PDF

A study on the introduction of organic waste-to-energy incentive system(I): Precise monitoring of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(I): 바이오가스화 정밀모니터링)

  • Kwon, Jun-Hwa;Moon, Hee-Sung;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.67-76
    • /
    • 2021
  • Biogasification is a technology that produces environmentally friendly fuel using methane gas generated in the process of stably decomposing and processing organic waste. Biogasification is the most used method for energy conversion of organic waste with high moisture content, and is a useful method for organic waste treatment following the prohibition of direct landfill (2005) and marine dumping (2013). Due to African Swine Fever (ASF), which recently occurred in Korea, recycling of wet feed is prohibited, and consumers such as dry feed and compost are negatively recognized, making it difficult to treat food waste. Accordingly, biogasification is attracting more attention for the treatment and recycling of food waste. Korea's energy consumption amounted to 268.41 106toe, ranking 9th in the world. However, it is an energy-poor country that depends on foreign imports for about 95.8% of its energy supply. Therefore, in Korea, the Renewable Energy Portfolio Standard (RPS) is being introduced. The domestic RPS system sets the weight of the new and renewable energy certificate (REC, Renewable energy certificate) of waste energy lower than that of other renewable energy. Therefore, an additional incentive system is required for the activation of waste-to-energy. In this study, the operation of an anaerobic digester that treats food waste, food waste Leachate and various organic wastes was confirmed. It was intended to be used as basic data for preparing the waste-to-energy incentive system through precise monitoring for a certain period of time. Four sites that produce biogas from organic waste and use them for power generation and heavy gas were selected as target facilities, and field surveys and sampling were conducted. Basic properties analysis was performed on the influent sample of organic waste and the effluent sample according to the treatment process. As a result of the analysis of the properties, the total solids of the digester influent was an average of 12.11%, and the volatile solids of the total solids were confirmed to be 85.86%. BOD and CODcr removal rates were 60.8% and 64.8%. The volatile fatty acids in the influent averaged 55,716 mg/L. It can be confirmed that most of the volatile fatty acids were decomposed and removed with an average reduction rate of 92.3% after anaerobic digestion.

The application of Phosphate Magnesia Cement for Solidification of Soil (토양 고형화를 위한 인산염 마그네시아 시멘트 적용 연구)

  • Choi, Hun;Choi, Jun-Ok;Song, Myong-Shin;Moon, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.533-536
    • /
    • 2008
  • This study is the application of phosphate magnesia cement for solidification of soils. The object of the study is the application of the pavment of the farm roads. The new pavement method must be environmental, ecologic and durable. So, for solidification of farm road's soil, we use magnesia cement as quick setting, high strength materials. At magnesia phosphate cement, mixing ratio of mono ammonium phosphate and magnesia is 4:6 and w/b is 50 wt%, it show 14 MPa of compressive strength, and high hydration heat. Solidified soils that mixing ratios of magnesia cement and soil are 4:6 and 5:5 have very high durability for freezing and thawing.

  • PDF