• Title/Summary/Keyword: 고품위 정광

Search Result 10, Processing Time 0.021 seconds

Iron-bearing Minerals in the Kaolin from Hadong-Sancheong Area (하동-산청 고령토 중의 함철광물 연구)

  • 김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 1988
  • 최근 국내에서의 고령토의 다양한 공업적 이용추세는 다량의 고품위 고령토를 필요로 하게 되었다. 그러나 하동-산청지역의 고령토 광석은 저품위가 대부분인 반면 그 양은 막대하다. 고령토의 저품위 현상은 산화철광물과 함철 규산염광물등 고령토 이외의 광물들이 고령토 광석에 다량 함유된데 기여한다. 그릴제거, 자력분리 및 디티오나이트에 의한 침출등 종래의 정제 방법에 의하여 제작된 고령토 정광에는 아직도 상당량의 철분이 함유되어 있어서 정광의 품위가 높지 않다. 고령토 광석으로부터 분리해낸 순수한 할로이사이트는 평균 Fe2O3 0.4%를 함유하고 있으며 이 철분은 할로이사이트내에 구조철로 함유되어 있다. 고령토에 함유되어 있는 함철광물로는 산화광물(적철석, 자철석, 침철석, 티탄철석)과 규산염광물(감섬석, 버미큘라이트, 일라이트, 녹니석)이 있다. 종래의 정제방법으로는 대부분의 산화철광물들은 제거 되었지만 버미큘라이트(Fe2O3 0.9%)와 일라이트 (Fe2O3 1.2%)는 고령토 정광에 계속 남아 있어서 저품위 정광이 되고 있다. 버미큘라이트와 일라이트의 함유가 주로 고령토 정광의 저품위의 원인이 되고 있기 때문에 고품위 고령토 정광을 생산하기 위해서는 이들 두 광물을 제거해야 한다.

  • PDF

Experimental Design of Column Flotation for Recovery of High Grade Molybdenite (고품위 몰리브덴 회수를 위한 컬럼부선 요인설계)

  • Hyun Soo Kim;Purev Oyunbileg;Chul-Hyun Park
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.34-44
    • /
    • 2023
  • In this work, column flotation using factorial design was performed for recovering high-grade molybdenite concentrate. First, the flotation concentrate from Samyang Mining Plant was regrinded to a mean size of 165, 116, 46.7, and 38.4 ㎛ for an increase of the liberation degree. Tests were carried out for various variables affecting column flotation, and then the concentrates with molybdenite grade and recovery of 98.3 % and 95.28 % were obtained, respectively. Also, regression was performed using the statistical analysis program (SPSS 25) with the factorial design and experimental data on particle size, flow wash-water velocity and depressant that affect high grade. From the results, a model equation was derived to predict the molybdenite grade (MG) and recovery (MR) with the relationship between column flotation variables. Factors such as depressant concentration + wash-water velocity and particle size + depressant concentration + wash-water velocity were smaller than the significance level (0.05) and had a significant effect on the dependent variable, grade, and in the recovery model, only particle size and wash-water velocity factors affected the dependent variable, recovery.

Preparation of High-grade Silica Sand for Metallurgical-grade Si Using a Physical Beneficiation (금속급 실리콘용 고순도 규사 제조를 위한 물리적 정제 특성)

  • Yang, Young-Cheol;Jeong, Soo-Bok;Chae, Young-Bae;Kim, Seong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • It is very important to raise the purity of silica for manufacturing metallurgical-grade silicon because the purification of silicon in the smelting process is very difficult. In present study, the silica sand which is obtained from Vietnam was mineralogically analyzed. Based on the results, a novel process to separate impurities from the silica sand was developed, which consisted of classification, specific gravity and magnetic separation steps. Using the developed process, high-grade silica sand concentrate containing over 99.8 wt% $SiO_2$ was prepared, being suitable for manufacturing the metallurgical-grade silicon.

Mongolia Erden-soum tungsten development (몽골 에르덴솜 텅스텐광 개발을 위한 선별시스템 개발)

  • Kim, Su-Gang;Jeon, Ho-Seok;Baek, Sang-Ho;Kim, Byoung-Gon
    • Mineral and Industry
    • /
    • v.28
    • /
    • pp.1-13
    • /
    • 2015
  • In this study, it was carried out separation process research and development to be able to produce high-grade tungsten concentrate form tungsten taken form Mongolia. In order to reduce treatment cost and increase separation efficiency the jig separation at first was applied for recovering the concentrate. Which reground would make the degree of liberation increase. Which was treated by shaking table to reject the gangue minerals from the first concentrate. Because the heavier product contains not only ferberite but also cassiterite, the product was treated by further dry magnetic separation to obtain the ferberite concentrate. Finally, the high-grade ferberite concentrate of 67.63% $WO_3$ could be obtained with recovery of 86.07% through the separation process developed in this study.

  • PDF

Froth Flotation of Copper Ore from Jambi Deposit, Indonesia (인도네시아 잠비산 동광석의 부유선별 특성 연구)

  • Kim, Hak-Soon;Jeon, Ho-Seok;Kim, Byoung-Gon;Baek, Sang-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.243-250
    • /
    • 2010
  • Froth flotation of complex copper ore from Indonesia Jambi mine has been carried out to produce high-grade Cu concentrate. Since the ore contained minor Cu sulfides in addition to major Cu carbonate (malachite), copper concentrate was recovered by two-stage process of flotation, which consisted of copper sulfide flotation using xanthate followed by copper oxide flotation using oleic acid. The copper sulfide concentrate of 57.5% Cu grade with 9.5% recovery was obtained by copper sulfide flotation under conditions of 300 g/t collector (1 : 1 mixture of xanthate series Aero Promoter 211 and Aero Promoter 242) and pH 6.0 pulp. In subsequent copper oxide flotation on sink products, the concentrate of 30.8% Cu grade with 92.1% recovery was obtained under the conditions of oleic acid 300 g/t, AF65 50 g/t, pH 8.0 and 2 times cleaning. The flotation techniques which can achieve a Cu grade of 36.1% and a recovery of 92.1% have been developed from the two-stage process of flotation.

A study on Microbubble Column flotation for Recovering High Grade Molybdenite (고품립(高品位) 몰리브덴광 선별(選別)을 위한 Microbubble Column 부선 특성 연구)

  • Kang, Hyun-Ho;Shin, Shung-Han;Jeon, Ho-Seok;Han, Oh-Hyung
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.35-44
    • /
    • 2010
  • As the competition of acquiring foreign resources of advanced countries and developing countries intensifies, South Korea which imports most of the mineral resources, started to re-develop domestic mines for molybdenite ore, in order to secure stable natural resources and decrease foreign currency expense. In this study, as a result of performing XRD and composite analysis on Dongwon NMC's (the sole producer of molybdenite ore in Korea) final concentrate(Mo 50.4%), Quartz, Grossular and Hedenbergite exists as impurities and size analysis showed that in relative coarse particle range of 60~140 mesh was formed with high grade over 57% Mo. Also, a test was performed to confirm the possibilities of increasing the grade and recovery of Dong won NMC's final ore. As a result, Mo 58.6% ($MoS_2$ 97.83%) was obtained with 87.47% recovery at a condition of 15 minutes grinding time, Kerosene as collector 0.1 l/ton, AF as Frother 65 7.2 l/ton, wash water of 630 ml/min and air flow rate of 1,197 ml/min.

A Study on the Recovery of Valuable Resources from Abandoned Fold Mine Tailings (금 광산 폐망미로부터 유가자원 회수에 관한 연구)

  • 채영배;정수복;윤평란
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 1999
  • Ths sludy was canied out to recover gold and sllics from abandoned gold mine talings with about 4.5 ghonAu and 84.88 wt% SOz. Tl~bee nef~cialiop~ro~c esses including crushing, screening, magnelic and gravity (humprey sp~rals,h aking table) separation \ulcornervex employed. Results were Feasible to rccovn h e gold concentrates (307.1 gltoilon .4u . 0.60 wr%, 97.7 giton Au : 0.27 wl%, 15.3 &/ton Au . 5.23 wt%, 21.2 g/ton Au : 2.42 wl%) and silica (96.40 wi% SiO\ulcorner yield 60 65 ~ 1 % )

  • PDF

Development of Flotation System for Utilization of Low Grade Lithium Ore (저품위 리튬운모광의 활용을 위한 부유선별 시스템 개발)

  • Lee, Kwang-Hoon;Jeon, Ho-Seok;Baek, Sang-Ho;Kim, Su-Gang
    • Mineral and Industry
    • /
    • v.25
    • /
    • pp.1-10
    • /
    • 2012
  • In this present work, the froth flotation of lithium ore from Boam mine located in Wooljin, Kyungbuk has been carried out to produce high-grade lithium concentrate. The sample ore-Lepidolite mainly contained silicate mineral (quartz, muscovite) and calcite. In consequences of the experiment, it has been possible to obtain relatively high-grade lithium while using anionic acid (oleic acid) to remove calcite before the froth flotation for lithium concentrate. Among the amines collectors (Armac-T, Armac-C, Armafloat-18, Armafloat-1597), Armac-T has been relatively effective than another ones. Under the optimum condition (collector : Armac-T 100g/t, frother : AF65 50g/t, depressants : $Na_2SiO_3$ 600g/t and Lactic acid 100g/t, pulp density : 20%, pH 5.5, number of cleaning : 2), it has been obtained relatively high-grade lithium concentrate ($Li_2O$) with recovery of 80.3% and with grade of 4.33%.

  • PDF

Recovery of Valuable Materials from Gold Mine Tailings (금(金) 광산(鑛山) 광미(鑛尾)로부터 유가자원(有價資源) 회수(回收)에 관한 연구(硏究))

  • Oh, Won;Cho, Hee-Chan;Lee, Jin-Soo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.77-85
    • /
    • 2010
  • This study was carried out to develop a process flow sheet for recovering valuables (gold and high purity silica) from the gold mine tailings containing 1.7 g/ton of gold and 79.48 wt.% $SiO_2$. Float-sink tests using heavy liquids was conducted to explore the possibility of recovering gold by gravity separation. Hydrocyclone, froth flotation, and triboelectrostatic separatoin tests were conducted to recover high purity silica from the gold mine tailings. The results of float-sink tests showed that particles containing 5.58 g/ton of gold could be obtained at 2.72 specific gravity, but with very low yields around 3%. Meanwhile, all tests with hydrocyclone, froth flotation, and triboelectrostatic separation showed that high purity silica with $SiO_2$ content over 90% could be obtained. The purity could be improved further up to about 94% by employing several recleaning steps in the froth flotation and triboelectrostatic process.

Titanium Geology and Metallurgical Processes from Applied Petrologic Viewpoints

  • Park, Won Choon
    • Economic and Environmental Geology
    • /
    • v.11 no.3
    • /
    • pp.89-98
    • /
    • 1978
  • Mineralogy, beneficiation, and processes of titanium ores are reviewed from petrographic viewpoints. The most important titanium minerals are ilmenite ($FeTiO_3$) and rutile ($TiO_2$). Ilmenite will play major role :for raw material, because rutile are rapidly diminishing. Thus, there is a need to develope a successful process for producing high grade Ti02 from ilmenite. Commercial, as well as R and D processes to treat more abundant ilmenite ores fall in three general classess: 1. Iron in ilmenite is partially or completely reduced and separated either physically or chemically. 2. Iron is reduced to ferrous state and chemically leached away from the titanium. 3. Ore is treated to make chlorides either selectively or with subsequent separation and purification of $TiC_4$. Routes and efficiencies of these process technologies are primarily influenced by the particular ore deposit to be mined and secondly by environmental considerations. One deposit parameters which influence ilmenite process technologies are: 1. Complexity of microtextures of ilmenite intergrown with Fe-oxide minerals. 2. Composition of concentrates; ilmenites contain minor amounts of substituted Mg, Mn, and V. These elements plus iron and gangue minerals can cause difficulties to complete reactions, substantial acid consumption, difficulties of removing waste solids, and waste disposal problems. Major contributions to be made by petrologists for process optimization are: characterization and interpretation of compositional and physical changes of raw materials and solids derived from process streams. These informations can play significant role in selecting and improving process steps for titania production.

  • PDF