• Title/Summary/Keyword: 고토양층

Search Result 99, Processing Time 0.023 seconds

고준위 방사성폐기물 금속저장체 영구 처분에 따른 현안 평가

  • 황용수;김성기;강철형
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.120-123
    • /
    • 2001
  • 국내 원전에서 배출되는 사용후핵연료의 안정한 장기 보관과 평화적 재활용을 위한 많은 연구중에서 금속저장체 연구는 사용후핵연료의 장기 보관에 따른 부식 문제 해결과 방사성 붕괴열 제거 관점에서 관심을 끌고 있다. 본 논문에서는 고준위 방사성폐기물로 분류되는 금속저장체를 국내 심지층 암반에 영구 처분했을 때 발생하는 처분장 요구 면적과 영구 처분에 따른 방사선적 안전성에 관한 고찰을 통해 금속 저장체를 이용한 사용후핵연료 관리의 장단점을 분석하였다. 예비 조사 결과 주어진 데이터 조건에서는 금속 저장체는 고준위 방사성폐기물 처분장의 면적을 5 배 정도 줄일 수 있을 것이며 방사선적 안전성 또한 우수한 것으로 판명되었으나 향후 경제성과 핵비확산성을 고려한 종합적인 타당성 연구가 수행되는 것이 바람직하다고 판명되었다.

  • PDF

TCE제거를 위한 반응층과 고정화층의 결합 실험

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.67-70
    • /
    • 2002
  • Remediation of groundwater contaminated with chlorinated organics, nitro aromatics, and heavy metals using zero valent iron (ZVI) filings has paid considerable attention in recent years. When the contaminants of high concentration leaked abundantly in subsurface environment, permeable reactive barrier technology using iron filing is taken a long time for the remediation of contaminated groundwater, The problem of contaminant shock is able to be solved using surfactant (hexadecyltrimethylammonium, HDTMA) modified bentonite (SMB) as immobilizing material. Therefore, the purpose of this research was to develop the combined remediation technology using conventional permeable reactive and immobilizing barrier for the enhanced decontamination of chlorinated compounds. Four column experiments were conducted to assess the performance of the mixed reactive materials with Ottawa sand, iron filing, and HDTMA-bentonite for trichloroethylene (TCE) removal under controlled groundwater flow conditions. TCE reduction rates with sand/iron filing/HDTMA-bentonite were highest among four column due to dechlorination of TCE by iron filing and sorption of TCE by SMB.

  • PDF

제주도 동부지역 수문지질에 관한 연구(I)

  • 박윤석;고기원;강봉래;함세영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.81-84
    • /
    • 2002
  • 제주도 동부지역 구좌읍 한동리-송당리를 연결하는 직선상의 4개 지점에서 착정한 심부관측정에 대한 시추코어 지질검층과 심도별 수온ㆍ전기전도도 검층 결과, 제주도를 형성시킨 화산활동과 관련된 화산분출물(용암류 및 쇄설물)은 해수면하 136~170m 범위까지만 분포하고 있고, 그 하부에는 미교결의 U층(U Formation)이 분포하고 있는 것으로 밝혀졌다. 구좌읍 한동리에 소재한 둔지봉(해발 280m)을 경계로 해안지역의 U층 상부에는 용암이 바다속으로 흘러갈 때 생겨나는 베개용암(Pillow Lava)이 분포하고 있음이 최초로 확인되었으며, 이 베개용암층을 통해 고염분지하수가 내륙쪽으로 확산되는 것으로 밝혀졌다. 담수지하수체 하부에 존재하는 고염분 지하수체는 해안에서 내륙쪽으로 오면서 점진적으로 감소하고 기저지하수체(담ㆍ염수 혼합대를 형성하는 지하수체)는 해안으로부터 약 6~6km(해발 120~130m)지역까지 분포하고 있으며, 담수지하수 렌즈체의 두께는 이론적인 G-H비 보다 훨씬 얇은 것으로 나타났다.

  • PDF

Geological Applications and Limitations of Regional Tephra Layers in Terrestrial Deposits in Korea (한국의 육상에서 발견되는 광역테프라층의 지질학적 활용과 한계)

  • Cheong-Bin Kim;Young-Seog Kim;Hyoun Soo Lim
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.680-690
    • /
    • 2022
  • Tephrochronology uses regional tephra for age dating and stratigraphic correlations. Regional tephras are important in Quaternary geology and archaeology because they can be used as stratigraphic time-markers. In this review, identification and dating methods of tephra are summarized. In addition, the characteristics of regional tephras in terrestrial deposits of the Korean Peninsula are elaborated, and geological applications and limitations of the regional tephra layers are also discussed. So far, AT, Ata, and Kb-Ks tephra layers from Kyushu, Japan have been found in Pleistocene paleosol, marine terrace deposits, and lacustrine deposits in Korea. Also, although not officially confirmed, Aso-4 tephra is likely to occur in terrestrial deposits. The regional tephra layers are vital for dating, especially with regard to sediments over 50 ka beyond the range of radiocarbon dating, and for dating of active faults. Furthermore, it can provide important information for preparing countermeasures against volcanic disasters. However, in order to use the tephra layer geologically, it must be confirmed whether it is a primary deposit based on sedimentological study.

The Practical Use of the Productive Aquifer Systems as a Source of a Renewable Thermal Energy and Local Water Works (지방상수도의 신규 수원과 재생에너지원으로서 고산출성 대수층의 활용)

  • Hahn, Jeongsang
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • The Quaternary volcanic rocks, clastic sedimentary rocks of Kyongsang System, and carbonate rocks of Joseon and Pyongan System are known as good productive and potential aquifer systems in South Korea. National Groundwater Informaton Mangement and Service System (GIMS) indicates that the exploitable, sustainable, and current use of groundwater are about 18.8, 12.9, and $3.73billion\;m^3/a$, respectively. The rest amount ($9.1billion\;m^3/a$) can still be used for an additional water supply source. Therefore. comprehensive groundwater survey work comprising hydrogeological mapping, subsurface investigation and quantitative aquifer test etc. are highly required to establish rational groundwater management strategy.

Loss and Sediment Estimation for the Precise Monitoring of Surface Soil (표토의 정밀 모니터링을 위한 유실 및 퇴적량 산정)

  • Kang, Young Mi;Kang, Joon Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.141-147
    • /
    • 2006
  • Soil losses are occurred by rainfall has caused productivity decline of a fertile surface soil and inflow sediment on Dam reservoir which are the main reasons of the decrease of storage volume and difficulty of water management. In this study, the amount and location of soil losses which were evaluated using USLE(Universal Soil Loss Equation) were applied on soil, landcover, and topographical conditions on the basis of satellite images and GIS. Furthermore, it was possible to evaluate the amount of riverbed sediments using echo-sounder and sediment rate were analyzed by comparing with soil losses.

Environment of Fluvial Sedimentary Deposits and Palynological Occurrence in the Geochang Area (거창 지역 하성퇴적층 형성환경과 화분산상 연구)

  • Kim, Ju-Yong;Yang, Dong-Yoon;Bong, Pil-Yun;Kim, Jin-Kwan;Oh, Keun-Chang;Choi, Don-Won
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.39-50
    • /
    • 2006
  • Jeonjangri site of Geochang area is located in the Geochang Basin, and lies on the river terrace of upstream part of Hwang River. Fluvial deposits are well distributed at the northern and southern walls of trench 2(district 2) in the Jeonjangri archeological site. This study aims to interpret the occurrences of fluvial sedimentary deposits on the basis of grain size analysis and palynological analysis in the representative sections of Jeongjangri site. The sedimentary profile shows that the upper units are typified by paleosols with soil wedge formed at about $25,000{\sim}30,000yr$ B.P, and the lower units are characterized by reddish brown muddy sands, organic muds and sand/gravel downwards in the profile. Particularly palynological study on the organic muds of southern wall section showed a result that lower unit is dominant with grass vegetation, and upper unit with Alnus-Quercus-Pinus vegetation. The former is interpreted to be formed at $60,000{\sim}50,000yr$ B.P (stadial), while the latter at $80,000{\sim}70,000yr$ B.P. In general broad-leaved/coniferous mixed forests are mostly dominant in Jeongjangri site and the climate was presumed to be cool temperate at that time.

  • PDF

Development of Coastal Sanddunes at Kimnyong-Wolchung Beach in Jejudo (제주 김녕-월정 사구의 발달과정에 관하여)

  • Park, Kyeong;Son, Ill;Chang, Eun-Mi
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.4
    • /
    • pp.851-864
    • /
    • 2004
  • A coastal dune field, located at Kimnyong-Wolchung beach in Jejudo, Korea, extends alongshore for about 4 km, with dunes extending inland about 6 km. Detailed geomorphological analysis of the area was carried out by using areal photography and Landsat images. Samples were collected across two transects, and physical and chemical properties are analyzed to detect the variation of both properties depending on distance form the beach. Paleosol layers found during the field trip suggest that dune emplacement is episodic. Radiocarbon dates from nearby Hyupjae beach indicate that dunes have been formed during the late Holocene by the disturbance of calcareous materials.

  • PDF

Evaluation of Carbon Sequestration Capacity of a 57-year-old Korean Pine Plantation in Mt. Taeh wa based on Carbon Flux Measurement Using Eddy-covariance and Automated Soil Chamber System (에디 공분산 및 자동화 토양챔버 시스템을 이용한 탄소 플럭스 관측 기반 태화산 57년생 잣나무조림지의 탄소흡수능력 평가)

  • Lee, Hojin;Ju, Hyungjun;Jeon, Jihyeon;Lee, Minsu;Suh, Sang-Uk;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.554-568
    • /
    • 2021
  • Forests are the largest carbon (C) sinks in terrestrial ecosystems. Recently, as enhancing forest C sequestration capacity has been proposed as a basic direction of the Republic of Korea's "2050 Carbon Neutral Strategy," accurate estimation of forest C sequestration has been emphasized. According to the Intergovernmental Panel on Climate Change guidelines, sequestration quantity is calculated from changes in C stocks in forest C pools, such as biomass, deadwood, litter and soil layer, and harvested wood products. However, in Korea, only the overstory biomass increase is now considered the amount of sequestration quantity, so there can be a significant difference from the actual forest C sequestration. In this study, we quantified forest C exchange through C flux measurement using an eddy covariance system and an automated soil chamber system in a 57-year-old Korean pine plantation located in Mt. Taehwa, Gwangju-si, Gyeonggi-do. Then, the net amount of C sequestration was compared with the amount of the overstory biomass increase. We estimated the annual C stock change in the remaining C pools by comparing the net sequestration amount from the C flux measurement with the overstory biomass increase and C stock change in the litter layer. Therefore, the net C sequestration of the Korean pine plantation estimated from the flux measurement was 5.96 MgC ha-1, which was about 2.2 times greater than 2.77 MgC ha-1 of the overstory biomass increase. The annual C stock increase in the litter layer was estimated to be 0.75 MgC ha-1, resulting in a total annual C stock increase of 2.45 MgC ha-1 in the remaining C pools. Our results indicate that the domestic forest is a larger C sink than the current methods, implying that more accurate calculations of the C sequestration capacity are necessary to quantify C stock changes in C pools along with the C flux measurement.

Transfer of Arsenic from Soilsto Rice Grains through Reducing the Thickness of Soil Covering in Soil Reclamation in an Abandoned Coal Mine Area (폐석탄광산 농경지(논) 토양개량복원 시 복토두께 조정에 따른 비소의 벼 전이효과 현장실증)

  • Il-Ha Koh;Yo Seb Kwon;Ju In Ko;Won Hyun Ji
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.3
    • /
    • pp.157-165
    • /
    • 2023
  • In Korea, a major contaminant of farmland soils in the vicinity of abandoned mines is arsenic, for which the general soil reclamation method is contaminated soil stabilization and cover the stabilized soil with clean soil at a thickness of 40 cm. In a previous pot experiment study we confirmed the feasibility of a lower thickness (20 cm) of covering soil for such reclamation in abandoned coal mines, where arsenic contamination levels are generally lower than in metal mines. In this subsequent study a field experiment including rice plant cultivation in field test plots was conducted. For over 4 months, the transfer of arsenic from the contaminated soil to the unpolished rice grains was reduced by 44% when a clean soil covering with a thickness of 20 cm was applied. The maximum decrease (56%) was shown when the stabilization process was performed before the covering. These results reveal a lower thickness of clean soil covering has a high feasibility and it can increase cost-efficiency in the reclamation of an abandoned coal mine.