DOI QR코드

DOI QR Code

Transfer of Arsenic from Soilsto Rice Grains through Reducing the Thickness of Soil Covering in Soil Reclamation in an Abandoned Coal Mine Area

폐석탄광산 농경지(논) 토양개량복원 시 복토두께 조정에 따른 비소의 벼 전이효과 현장실증

  • Il-Ha Koh (National Environment Lab.(NeLab)) ;
  • Yo Seb Kwon (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Ju In Ko (Technology Research & Development Institute, Korea Mine Rehabilitation and Mineral Resources Corporation) ;
  • Won Hyun Ji (Department of General Education for Human Creativity, Hoseo University)
  • 고일하 (환경기술정책연구원(NeLab)) ;
  • 권요셉 (환경기술정책연구원(NeLab)) ;
  • 고주인 (한국광해광업공단 기술연구원) ;
  • 지원현 (호서대학교 창의교양학부)
  • Received : 2023.01.31
  • Accepted : 2023.05.10
  • Published : 2023.06.30

Abstract

In Korea, a major contaminant of farmland soils in the vicinity of abandoned mines is arsenic, for which the general soil reclamation method is contaminated soil stabilization and cover the stabilized soil with clean soil at a thickness of 40 cm. In a previous pot experiment study we confirmed the feasibility of a lower thickness (20 cm) of covering soil for such reclamation in abandoned coal mines, where arsenic contamination levels are generally lower than in metal mines. In this subsequent study a field experiment including rice plant cultivation in field test plots was conducted. For over 4 months, the transfer of arsenic from the contaminated soil to the unpolished rice grains was reduced by 44% when a clean soil covering with a thickness of 20 cm was applied. The maximum decrease (56%) was shown when the stabilization process was performed before the covering. These results reveal a lower thickness of clean soil covering has a high feasibility and it can increase cost-efficiency in the reclamation of an abandoned coal mine.

폐석탄광산 주변 농경지의 주요 토양오염물질은 비소이며, 폐금속광산과는 달리 그 오염수준이 관련 환경기준을 경미하게 초과하는 특성을 가진다. 이에 선행연구에서는 폐석탄광산 농경지의 토양개량·복원사업(안정화 처리 및 복토층 조성) 시 복토층 두께를 기존 40 cm에서 20 cm 두께로 낮추는 방안의 적용성을 실내 포트실험으로 확인한 바 있다. 금번 후속연구에서는 본 방안을 실제 농경지에서 벼 재배를 통해 실증하였다. 4개월이 넘는 벼 재배기간 중 쌀알로 전이된 비소의 농도는 20 cm 두께의 복토 시 44% 이상의 전이감소율을 보였다. 특히 오염된 원지반을 안정화 처리한 후 복토한 경우엔 이의 감소율이 56%까지 증가하였다. 따라서 본 실증연구를 통해 복토층 두께 20 cm의 적용성을 확인하였고, 이는 곧 복토재 사용량 감소로 인한 사업비 절감도 가능함을 시사한다.

Keywords

Acknowledgement

본 연구는 한국광해광업공단으로부터 기술개발사업비를 지원받아 수행된 것임.

References

  1. Brady NC, Weil RR. 2014. Elements of the Nature and Properties of Soils, Pearson Education Limited; p. 490. 
  2. Chae JC. 2012. Science of Rice Production. Hyangmunsa; p. 70. [Korean Literature] 
  3. Gwak BH, Yoon KE. 2011. Plant Physiology. Hyangmunsa; pp. 82-85, 100. [Korean Literature] 
  4. Jordanova N. 2017. Soil Magnetism: Applications in Pedology Environmental Science and Agriculture. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singpore, Sydney, Tokyo: Academic Press; pp. 402-403. 
  5. Jung MC, Jung MY. 2006. Evaluation and management method of environmental contamination from abandoned metal mines in Korea. J KSMER. 43(5): 383-394. [Korean Literature] 
  6. Jung YK, Hong JH, Lee DJ, Kim JP, Kim DK, Joo SD. 2008. A study on mine drainage characteristics as abandoned coal mine in Gyeongsang province. Proceedings of the Korean Geotechnical Society Conference; 2008 Oct 10-11; Gwangju, Korea. [Korean Literature] 
  7. Karaca O, Cameselle C, Reddy KR. 2018. Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Rev Environ Sci Biotechnol. 17: 205-228.  https://doi.org/10.1007/s11157-017-9453-y
  8. Kim MS, Park MJ, Yang JH, Lee SH. 2019. Human health risk assessment for toxic trace elements in the Yaro mine and reclamation options. Int J Environ Res Public Health 16: 5077. 
  9. Kirk GJD, Greenway H, Atwell BJ, Ismail AM, Colmer TD. 2014. Adaptation of rice to flooded soils. In: Luttge U, Beyschlag W, Cushman J, editor. Progress in Botany 75. Berlin, Heidelberg: Springer; pp. 222-223. 
  10. Koh IH, Kim EY, Ji WH, Yoon DG, Chang YY. 2015. The fate of As and heavy metals in the flooded paddy soil stabilized by limestone and steelmaking slag. J Soil Groundw Environ. 20(1): 7-18. [Korean Literature]  https://doi.org/10.7857/JSGE.2015.20.1.007
  11. Koh IH, Kim JE, Kim GS, Chang YY, Yang JK, Moon DH, Choi YL, Ji WH. 2018. Transition of lead from agricultural paddy soil amended with lime to rice plant after bench-scale in-situ washing with FeCl3. J Soil Groundwater Environ. 23(1): 74-84. [Korean Literature]  https://doi.org/10.7857/JSGE.2017.22.1.018
  12. Koh IH, Kwon YS, Jeong MH, Ko JI, Bak GI, Ji WH. 2021a. Transfer of arsenic from paddy soils to rice plant under different cover soil thickness in soil amendments in abandoned coal mine. Econ Environ Geol. 54(4): 483-494. [Korean Literature]  https://doi.org/10.9719/EEG.2021.54.4.483
  13. Koh IH, Kwon YS, Jeong MH, Ji WH. 2021b. Soil loss reduction and stabilization of arsenic contaminated soil in sloped farmland using CMDS (coal mine drainage sludge) under rainfall simulation. J Soil Groundwater Environ. 26(6): 18-16. [Korean Literature] 
  14. Kwon YS, Koh IH, Yang SC, In HJ. 2021. Characteristics of agricultural soil contamination in abandoned coal mine by regional river system. Proceedings of the Korean Society of Soil and Groundwater Environment Conference; 2021 Apr 22-23; Gyeongju (Korea) [Korean Literature] 
  15. KOMIR (Korea Mine Rehabilitation and Mineral Resources Corp.). 2022. Guidebook: Mine Rehabilitation Technology in Korea - 2022 Edition [Korean Literature] 
  16. Lee MH, Jeon JH. 2010. Study for the stabilization of arsenic in the farmland soil by using steel making slag and limestone. Econ Environ Geol. 43(4): 305-314. [Korean Literature] 
  17. Makino T. 2014. Heavy metal contamination in Japan. Proceedings of International Forum on Soil and Groundwater; 2014 Nov 1; Seoul (Korea). 
  18. Meharg AA, Zhao FJ. 2012. Arsenic & Rice. Springer; pp. 25-27, 71-74. 
  19. Moon DH, Dermatas D, Menounou N. 2004. Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Sci Total Environ. 330: 171-185.  https://doi.org/10.1016/j.scitotenv.2004.03.016
  20. Nakamura K, Katou H. 2013. Arsenic and Cadmium Solubilization and Immobilization in Paddy Soils in Response to Alternate Submergence and Drainage. In: Selim HM, editor. Competitive Sorption and Transport of Heavy Metals in Soils and Geological Media. CRC Press; pp. 383-386. 
  21. NIER (National Institute of Environmental Research). 2018. Korea standard methods for soil analysis. [Korean Literature] 
  22. Pierzynski GM, Sims JT, Vance GF. 1994. Soils and Environmental Quality. Lewis Publishers; pp. 115-121. 
  23. Sun GX, Williams PN, Carey AM, Zhu YG, Deacon C, Raab A, Feldmann J, Islam RM, Meharg AA. 2008. Iorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Technol. 42(19): 7542-7546.  https://doi.org/10.1021/es801238p
  24. Wuana RA, Okieimen FE. 2014. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks, and Best Available Strategies for Remediation. In: Asrari E. editor. Heavy Metal Contamination of Water and Soil. Apple Academic Press Inc.; p. 7. 
  25. Yang JE, Jung JB, Kim JE, Lee GS. 2008. Ag-Environmental Science. CIR; p. 73. [Korean Literature] 
  26. Zhu X, Qi X, Wang H, Shi Y, Liao T, Li Y, Liu C, Wang X. 2014. Characterization of high-arsenic sludge in copper metallurgy plant. In: Sarpenter JS, Bai C, Hwang JY, Ikhmayies S, Li B, Monteiro SN, Peng Z, Zhang M, editor. Characterization of minerals, metals, and materials 2014. Hoboken, New Jersey: John Wiley & Sons, Ltd.; pp. 173-184.