DOI QR코드

DOI QR Code

Geological Applications and Limitations of Regional Tephra Layers in Terrestrial Deposits in Korea

한국의 육상에서 발견되는 광역테프라층의 지질학적 활용과 한계

  • Cheong-Bin, Kim (Department of Phycics Education, Sunchon National University) ;
  • Young-Seog, Kim (Department of Earth & Environment Sciences, Pukyong National University) ;
  • Hyoun Soo, Lim (Department of Geological Sciences, Pusan National University)
  • 김정빈 (순천대학교 물리교육과) ;
  • 김영석 (부경대학교 지구환경과학과) ;
  • 임현수 (부산대학교 지질환경과학과)
  • Received : 2022.12.26
  • Accepted : 2022.12.31
  • Published : 2022.12.31

Abstract

Tephrochronology uses regional tephra for age dating and stratigraphic correlations. Regional tephras are important in Quaternary geology and archaeology because they can be used as stratigraphic time-markers. In this review, identification and dating methods of tephra are summarized. In addition, the characteristics of regional tephras in terrestrial deposits of the Korean Peninsula are elaborated, and geological applications and limitations of the regional tephra layers are also discussed. So far, AT, Ata, and Kb-Ks tephra layers from Kyushu, Japan have been found in Pleistocene paleosol, marine terrace deposits, and lacustrine deposits in Korea. Also, although not officially confirmed, Aso-4 tephra is likely to occur in terrestrial deposits. The regional tephra layers are vital for dating, especially with regard to sediments over 50 ka beyond the range of radiocarbon dating, and for dating of active faults. Furthermore, it can provide important information for preparing countermeasures against volcanic disasters. However, in order to use the tephra layer geologically, it must be confirmed whether it is a primary deposit based on sedimentological study.

테프라연대학은 광역테프라를 연대측정과 층서대비에 이용하는 연구이다. 광역 테프라층은 층서적 건층으로 사용될 수 있기 때문에 제4기지질학과 고고학 분야에서 매우 중요하다. 이 논평에서는 테프라의 동정 방법과 연대측정 방법에 대해 정리하였다. 또한 한반도의 육상퇴적층에서 발견되는 광역테프라층의 종류와 산출 특성에 대해 정리하였고, 광역테프라층의 지질학적 활용 방법과 한계점에 대해서도 토의하였다. 지금까지 한반도 육상의 고토양층, 해안단구 퇴적층, 호수퇴적층에서는 일본 큐슈 기원의 AT와 Ata, Kb-Ks 테프라가 발견되었다. 또한 공식적으로 발견되지는 않았지만 Aso-4 테프라도 발견될 가능성이 높은 것으로 판단된다. 광역테프라층은 제4기 퇴적층, 특히 방사성탄소연대측정의 범위를 넘는 5만년 이상 퇴적층의 연대측정과 층서대비에 유용하며, 활성단층의 연대측정과 화산재해에 대한 대응책 마련에도 유용한 정보를 제공한다. 하지만 테프라층을 지질학적으로 이용하기 위해서는 퇴적학적 연구를 통해 일차퇴적 여부에 대한 확인이 필요하다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 연구비 지원으로 수행되었습니다(No. 20201510100020). 논문을 검토하고 좋은 의견을 주신 두 분의 심사위원들과 편집위원께 감사드립니다.

References

  1. Bonadonna, C. and Houghton B.F., 2005, Total grain-size distribution and volume of tephra-fall deposits. Bulletin of Volcanology, 67, 441-456. Bary, J.R., 1976, Volcanic triggering of glaciation. Nature, 260, 414-415. https://doi.org/10.1038/260414a0
  2. Borchardt, G.A., Aruscavage, P.J., and Millard Jr., H.T., 1972, Correlation of Bishop Ash, a Pleistocene marker bed, using instrumental neutron activation analysis. Journal of Sedimentary Petrology, 42, 301-306.
  3. Busacca, A.J., Nelstead, K.T., McDonald, E.V., and Purser, M.D., 1992, Correlation of distal tephra layers in loess in the Channelled Scabland and Palouse of Washington State. Quaternary Research, 37, 281-303. https://doi.org/10.1016/0033-5894(92)90067-s
  4. Carson, E.C., Fournelle, J.H., Miller, T.P., and Mickelson, D.M., 2002, Holocene tephrochronology of the Cold Bay area, southwest Alaska Peninsula. Quaternary Science Reviews, 21, 2213-2228.
  5. Cerling, T.E., Brown, F.H., and Bowman, J.R., 1985, Lowtemperature alteration of volcanic glass; Hydration, Na, K, 18O, and Ar mobility. Chemical Geology, Isotopic Geosciences Section, 52, 281-293. https://doi.org/10.1016/0168-9622(85)90040-5
  6. Choi, W.H. Chang, C.J., Inoue, D., Yanagida, M., Sasaki, T., Shin, H.J., Lee, J.D., and Kim, Y.J., 2003, Paleosol and tephra stratigraphy above the marine terrace in southeastern Korean Peninsula. In. Proc. Geological Society of Korea Fall Meeting, 50. (in Korean)
  7. Choi, W.H., Chang, C.J., Lee, D.S., Inoue, D., Sasaki, T., and Yanagida, M., 2005, Paleosol and tephra stratigraphy above the marine terrace in southeastern Korean Peninsula. In. Proc. Geological Society of Korea Fall Meeting, 107. (in Korean)
  8. Chun, J.H., Han, S.J., and Cheong, D.K., 1997, Tephrostratigraphy in the Ulleung Basin, East Sea Late Pleistocene to Holocene. Geosciences Journal, 1, 154-166. https://doi.org/10.1007/BF02910207
  9. Chun, J.H., Han, S.J., Cheong, D.K., Huh, S., Bahk, J.J., and Choi, D.L., 1998, Tephrostratigraphy of deep-sea sediments around submarine channels, northeastern Ulleung Basin. Journal of the Geological Society of Korea, 34, 192-210. (in Korean with English abstract)
  10. Chun, J.H., Ikehara, S., and Han, S.J., 2004, Evidence in Ulleung Basin sediment cores for a Termination II (Penultimate Deglaciation) eruption of the Aso-3 tephra. The Quaternary Research, Japan, 43, 99-112. https://doi.org/10.4116/jaqua.43.99
  11. Costa, A., Macedonio, G., and Folch, A., 2006, A threedimensional Eulerian model for transport and deposition of volcanic ashes. Earth and Planetary Science Letters, 241, 634-647. https://doi.org/10.1016/j.epsl.2005.11.019
  12. Danhara, T., Bae, K., Okada, T., Matsufuji, K., and Hwang, S., 2002, What is the real age of the Chongokni Paleolithic site? A new approach by fission track dating, K-Ar dating and tephra analysis. In Bae, K., Lee, J. (eds.), Paleolithic Archaeology in Northeast Asia. Yeoncheon County and the Institute of Cultural Properties, Hanyang University, 77-116.
  13. Danhara, T., Yamashita, T., Iwano, H., and Kasuya, M., 1992, An improved system for measuring refractive index using the thermal immersion method. Quaternary International, 13/14, 89-91.
  14. Fero, J., Carey, S.N. and Merrill, J.T., 2009. Simulating the dispersal of tephra from the 1991 Pinatubo eruption: Implications for the formation of widespread ash layers. Journal of Volcanology and Geothermal Research, 186, 120-131. https://doi.org/10.1016/j.jvolgeores.2009.03.011
  15. Froggatt, P.C., 1983, Toward a comprehensive Upper Quaternary tephra and ignimbrite stratigraphy of New Zealand using electron microprobe analysis of glass shards. Quaternary Research, 19, 188-200. https://doi.org/10.1016/0033-5894(83)90004-2
  16. Froggatt, P.C., 1992, Standardization of the chemical analysis of tephra deposits. Report of the ICCT Working Group. Quaternary International, 13/14, 93-96. https://doi.org/10.1016/1040-6182(92)90014-S
  17. Furuta, T., Fujioka, K., and Arai, F., 1986, Widespreaqd sub-marine tephras around Japan - Petrographic and chemical properties. Marine Geology, 72, 125-142. https://doi.org/10.1016/0025-3227(86)90103-9
  18. Hallett, D.J., Mathewes, R.W., and Foit Jr., F.F., 2001, Mid-Holocene glacier peak and Mount St. Helens We tephra layers detected in lake sediments from southern British Columbia using high-resolution techniques. Quaternary Research, 55, 284-292. https://doi.org/10.1006/qres.2001.2229
  19. Hunt, J.B. and Hill, P.G., 1996, An inter-laboratory comparison of the electron probe microanalysis of glass geochemistry. Quaternary International, 34-36, 229-241. https://doi.org/10.1016/1040-6182(95)00088-7
  20. Inoue, D., Sasaki, T., Yanagida, M., Choi, W.H., and Chang, C.J., 2002, Stratigraphy of the Marine Terraces along the East Coast in Korea by means of the loesspaleosol sequence and Japanese Tephra, In. Proc. Geological Society of Korea Fall Meeting, 81.
  21. Kim, C.B., Kim, Y.S., and Lim, H.S., 2021, Occurrence and Identification of Tephra Layers found in the Ulsan area, Southeastern Korea. Journal of the Korean Earth Science Society, 42(1), 55-64.
  22. Kim, J.Y., Yang, D.Y., Choi, W.H., and Kim, J.C., 2006. Estimation of uplift rate based on morphostratigraphy and chronology of coastal terraces in the SE part of Korean Peninsula. The Korean journal of Quaternary research, 20(2), 51-57. (in Korean with English abstract)
  23. King, M., Busacca, A.J., Foit Jr., F.F., and Kemp, R.A., 2001, Identification of disseminated Trego Hot Springs tephra in the Palouse, Washington State. Quaternary Research 56, 165-169.
  24. Kolata, D.R., Huff, W.D., and Berstrom, S.M., 1996, Ordovician K-b entonites of eastern North America. Geological Society of America, Special Paper 313, 84 p.
  25. Lee, S.H. and Yun, S.H., 2011, Impact of meteorological wind fields average on predicting volcanic tephra dispersion of Mt. Baekdu. Journal of Korean Earth Science Society, 32(4), 360-372. (in Korean with English abstract)
  26. Lee, S.H., Jang, E.S., and Yun, S.H., 2014, Numerical simulation of volcanic ash dispersion and deposition during 2011 eruption of Mt. Kirishima. Journal of Korean Earth Science Society, 35(4), 237-248. (in Korean with English abstract) https://doi.org/10.5467/JKESS.2014.35.4.237
  27. Lim, H.S., Lee, Y.I., Yi, S., Kim, C.-B., Chung, C.-H., Lee, H.J., and Choi, J.H., 2007, Large vertebrate burrows in Upper Pleistocene paleosols at Korean Palaeolithic sites and their significance as a stratigraphic time-marker. Quaternary Research, 68, 213-219. https://doi.org/10.1016/j.yqres.2007.05.001
  28. Lim, H.S., Nam, Y.J., Lee, Y.I., Kim, C.B., Yi, S., Chung, C.H., Lee, H.J., and Yoon, H.I., 2006, Principles and applications of tephrochronology: widespread AT (AiraTanzawa) tephra found in the Korean Peninsula. Journal of the Geological Society of Korea, 42, 645-656. (in Korean with English abstract)
  29. Lim, J., Hong, S. S., Han, M., Yi, S., and Kim, S. W., 2021, First finding of impact cratering in the Korean Peninsula. Gondwana Research, 91, 121-128. https://doi.org/10.1016/j.gr.2020.12.004
  30. Machida, H., and Arai, F., 1976, The discovery and significance of the very widespread tephra: the Aira-Tn ash. Kagaku (Science), 46, 339-347.
  31. Machida, H., and Arai, F., 1983, Extensive ash falls in and around the Sea of Japan fro large Late Quaternary eruptions. Journal of Volcanology and Geothermal Research, 18, 151-164. https://doi.org/10.1016/0377-0273(83)90007-0
  32. Machida, H., and Arai, F., 1992, Atlas of tephra in and around Japan. University of Tokyo Press, 276 p.
  33. Machida, H., Arai, F., and Momose, M., 1985, Aso-4: A widespread tephra and its implications to the events of late Pleistocene in and around Japan. Bulletin of the Volcanological Society fo Japan, 30, 49-70.
  34. Machida, H., 1999. The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan. Global and Planetary Change, 21, 71-94. https://doi.org/10.1016/S0921-8181(99)00008-9
  35. Machida, H., 2002, Volcanoes and tephras in the Japan area, Global Environmental Research, 6, 19-28.
  36. Matsumoto, E., Maeda, Y., Takemura, K., and Nishida, S., 1987, New radiocarbon age of Aira-Tn ash (AT). The Quaternary Research of Japan, 26, 79-84.
  37. Miyairi, Y., Yoshida, K., Miyazaki, Y., Matsuzaki, H., and Kaneoka, I., 2004, Improved 14C dating of a tephra layer (AT tephra, Japan) using AMS on selected organic fractions. Nuclear Instruments and Methods in Physics Research B, 223-224, 555-559. https://doi.org/10.1016/j.nimb.2004.04.103
  38. Murayama, M., Matsumoto, E., Nakamura, T., Okamura, M., Yasuda, H., and Taira, A., 1993, Re-examination of the eruption age of Aira-Tn Ash (AT) obtained from a piston core off Shikoku determined by AMS?14C dating of planktonic foraminifera. Journal of Geological Society of Japan, 99, 787-798.
  39. Nakamura, Y., Katayama, Y., and Hirakawa, K., 2002. Hydration and refractive indices of Holocene tephra glass in Hokkaido, Northern Japan. Journal of Volcanology and Geothermal Research, 114, 499-510. https://doi.org/10.1016/S0377-0273(01)00303-1
  40. Oba, T., 1991. The eruption age of the Aso-4 and Ata ashes inferred from oxygen isotope stratigraphy. The Earth Monthly, 13, 224-227.
  41. Ono, K., Matsumoto, Y., Miyahisa, M., Teraoka, Y., and Kambe, N., 1977, Geology of the Taketa district. With Geolgoical Sheet map at 1: 50,000. Geological Survey of Japan, 145 p.
  42. Park, M.-H., Kim, I.-S., and Shin, J.-B., 2003, Characteristics of the late Quaternary tephra layers in the East/Japan Sea and their new occurrences in western Ulleung Basin sediments. Marine Geology, 202, 135-142. https://doi.org/10.1016/S0025-3227(03)00287-1
  43. Pearce, N.J.G., Westgate J.A., and Perkins, W.T., 1996, Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: Quantitative and single internal standard-Multi-element methods. Quaternary International, 34-36, 213-227.
  44. Pearce, N.J.G., Westgate, J.A., Perkins, W.T., Eastwood, W.J., and Shane, P., 1999, The application of laser ablation ICP-MS to the analysis of volcanic glass shards from tephra deposits: bulk glass and single shard analysis. Global and Planetary Change, 21, 151-171. https://doi.org/10.1016/S0921-8181(99)00012-0
  45. Pearce, N.J.G., Westgate, J.A., Perkins, W.T., and Preece, S.J., 2004, The application of ICP-MS methods to tephrochronological problems. Applied Geochemistry, 19, 289-322. https://doi.org/10.1016/S0883-2927(03)00153-7
  46. Rieck, H.J., Sarna-Wojcicki, A.M., Mayer, C.E., and Adam, D.P., 1992, Magnetostratigraphy and tephraochronology of an Upper Pliocene to Holocene record in lake sediments st Tule Lake, Northern California. Geological Society of America Bulletin, 104, 409-428. https://doi.org/10.1130/0016-7606(1992)104<0409:MATOAU>2.3.CO;2
  47. Ross, C.S. and Smith, R.L., 1955. Water and other volatiles in volcanic glasses. American Mineralogist, 40, 1071-1089.
  48. Sarna-Wojcicki, A.M. and Davis, J.O., 1991, Quaternary tephrochronology. In Morrison, R.B. (ed.), Quaternary Nonglacial Geology: Conterminous United States. Geological Society of America, DNAG Series, V. K-2, 93-116.
  49. Sarna-Wojcicki, A.M., 1976, Correlation of late Cenozoic tuffs in the Central Coast Ranges of California by menas of trace- and minor-element chemistry. USGS Professional Paper 972, 30 p.
  50. Sarna-Wojcicki, A.M., Bowman, H.R., Meyer, C.E., Russell, P.C., Woodward, M.J., McCoy, G., Rowe, J.J., Jr., Baedecker, P.A., Asaro, F., and Michael, H., 1984, Chemical Analyses, Correlations, and Ages of Upper Pliocene and Pleistocene Ash Layers of East-Central and Southern California. US Geological Survey Professional Paper 1293.
  51. Sarna-Wojcicki, A.M., Morrison, S.D., Meyer, C.E., and Hillhouse, 1987, Correlation of upper Cenozoic tephra layers between sediments of the western United States and eastern Pacific Ocean and comparison with biostratigraphic and magnetostratigraphic age data. Geological Society of America Bulletin, 98, 207-223. https://doi.org/10.1130/0016-7606(1987)98<207:COUCTL>2.0.CO;2
  52. Shin, J.B, Yu, K.M., Naruse, T., and Hayashida, A., 2004, Study on loess-paleosol stratigraphy of Quaternary unconsolidated sediments at E55S20-IV pit of Chongokni Paleolithic Site. Journal of the Geological Society of Korea, 40(4), 369-381. (in Korean with English abstract)
  53. Shin, S., Lee, J.Y., Hong, S.S., Nahm, W.H., Kim, C.B., and Lim, H.S., 2022, Kb-Ks tephra found in lake sediments in the Jeokjung-Chogye Basin, which was formed by a meteorite impact, and its geological implications. Scientific Reports (in review).
  54. Smith, D.G.W. and Westgate, J.A., 1969, Electron probe technique for characterising pyroclastic deposits. Earth and Planetary Science Letters, 5, 313-319. https://doi.org/10.1016/S0012-821X(68)80058-5
  55. Sparks, R.S.J., 1986. The dimensions and dynamics of volcanic eruption columns. Bulletin of Volcanology 48, 3-15. https://doi.org/10.1007/BF01073509
  56. Steen-McIntyre, V., 1975, Hydration and superhydration of tephra glass: a potential tool for estimating age of Holocene and Pleistocene ash beds. In: Suggate, R.P. and Cresswell, M.M. (Eds.), Quaternar Studies. Royal Society of New Zealand. Wellington, pp. 271-278.
  57. Toms, P.S., King, M., Zarate, M.A., Kemp, R.A. and Foit Jr., F.F., 2004, Geochemical characterization, correlation, and optical dating of tephra in alluvial sequences of central western Argentina. Quaternary Research, 62, 60-75. https://doi.org/10.1016/j.yqres.2004.05.005
  58. Tsuji, S., and Kosugi, M., 1991. Influence of Aira-Tn ash (AT) eruption on ecosystems. The Quaternary Research of Japan, 30, 419-426.
  59. Westgate, J.A. and Briggs, N.D., 1987, Dating methods of Pleistocene deposits and their problems: V. tephrochronology and fission-track dating. In Rutter, N.W. (ed.), Dating Methods of Pleistocene Deposits and their Problems. Geoscience Canada Reprint Series 2, Ottawa, 31-38.
  60. Westgate, J.A., Perkins, W.T., Fuge, R., Pearce, N.J.G. and Wintle, A.G., 1994. Trace element analysis of volcanic glass shards by laser ablation inductively coupled plasma mass spectrometry: application to tephrochronological studies. Applied Geochemistry, 9, 323-335. https://doi.org/10.1016/0883-2927(94)90042-6
  61. Yi, S.B., Soda, T., and Arai, F., 1998, New discovery of Aira-Tn ash (AT) in Korea. Journal of the Korean Geographical Society, 33, 447-454.
  62. Yun, S.H., Choi, E.K., Chang, C., 2016. Selecting hazardous volcanoes that may cause a widespread volcanic ash disaster to the Korean Peninsula. Journal of the Korean Earth Science Society, 37(6), 346-358. (in Korean with English abstract) https://doi.org/10.5467/JKESS.2016.37.6.346