• Title/Summary/Keyword: 고체팬텀

Search Result 35, Processing Time 0.025 seconds

The Study on Implementation of a Semi-Solid Flat Phantom with Equivalent Electrical Properties to Whole Human Body at MICS and ISM Band (MICS 대역과 ISM 대역에서 인체 전기적 상수를 갖는 준(準) 고체형 플랫 팬텀 제작)

  • Lee, Soon-Yong;Seo, Won-Bum;Kwon, Kyeol;Choi, Jea-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.101-107
    • /
    • 2012
  • When wireless devises for MICS(Medical Implant Communication Service) or ISM(Industrial Scientific and Medical) bands are designed, it is necessary to verify the performance by using a human body flat phantom. However, most of studies on the phantom are limited to the biological effects of mobile-phone EMF. In this paper, semi-solid phantoms having the electric properties suggested by FCC at MICS and ISM bands are fabricated. The manufactured phantoms satisfy the electric properties($\varepsilon_r=56.7$ and $\sigma=0.94$ at MICS band, $\varepsilon_r=52.7$ and $\sigma=1.95$ at ISM band) at each band. All the composing materials for phantoms are commercially available in domestic market. Two methods using both polyethylene powder and TX-151 and glycerin at each band are proposed for diverse purpose. The electrical properties of the fabricated phantoms are measured by a dielectric probe kit and network analyzer after the lapse of one day (24 hours).

External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities (고체팬텀을 이용한 국내 방사선 치료시설의 흡수선량에 대한 조사)

  • Choi, Chang-Heon;Kim, Jung-In;Park, Jong-Min;Park, Yang-Kyun;Cho, Kun-Woo;Cho, Woon-Kap;Lim, Chun-Il;Ye, Sung-Joon
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • Purpose: We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. Materials and Methods: In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party’s American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Results: Most of the beams (74%) were within ${\pm}2%$ of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance (${\pm}3%$), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be ${\pm}1.5%$. Conclusion: The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation (전신방사선조사(Total Body Irradiation) 시 Beam Spoiler와 환자 간의 거리에 관한 고찰)

  • Choi, Jong-Hwan;Kim, Jong-Sik;Choi, Ji-Min;Shin, Eun-Hyuk;Song, Ki-Won;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 2007
  • Purpose: Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Materials and Methods: Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = $40{\times}40cm^2$. The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Results: Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is $14.58{\sim}14.92cGy$. Therefore, The surface dose was measured $99.4{\sim}101%$ with got near most to the prescription dose. Conclusion: In clinical case, distance between beam spoiler and patient affect surface dose. If once $50{\sim}60cm$ of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  • PDF

Study on the Characteristics of Response Correction Factor of Ionization Chamber in RW3 Solid Phantom for High Energy X-rays (RW3 고체팬텀에서 고에너지 X-선에 대한 전리함 반응보정인자의 특성에 관한 연구)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok;Kim, Bu-Gil
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.205-212
    • /
    • 2009
  • The response correction factor ( h) is a factor to convert the response of the chamber in solid phantom to the response in water. In RW3 solid phantom, the dependency of beam quality and depth for high energy X-rays are known characteristics, however the dependency of field size, SSD, and chamber type are unknown. In this work we have studied the unknown characteristics on the dependency of response correction factor. The farmer type chamber (FC65G) and small chamber (CC13) were used and two beam qualities of 6 and 15 MV were evaluated. The measured response correction factors at the depth of 5 cm and 10 cm were h = 1.015 and 1.021 for 6 MV X-rays, and h = 1.024 and 1.029 for 15 MV X-rays. In conclusion the response correction factor did not depend on the field size and SSD while depending on the beam quality and depth. In the chambers, there are small differences between the two chambers used in this study but we think additional study for more chambers should be required. The results in this study can be used for analyzing the measured values from ionization chamber dosimetry in RW3.

  • PDF

10 MV X-ray Beam Dosimetry by Water and White Polystyrene Phantom (물과 백색폴리스티렌 팬텀에 의한 10 MV X-선 빔 선량계측)

  • Kim, Jong-Eon;Cha, Byung-Youl;Kang, Sang-Sik;Park, Ji-Koon;Sin, Jeong-Wook;Kim, So-Yeong;Jo, Seong-Ho;Son, Dae-Woong;Choi, Chi-Won;Park, Chang-Hee;Yoon, Chun-Sil;Lee, Jong-Duk;Park, Byung-Do
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • The purpose of this study is to get the correction factor to correct the measured values of the absolute absorbed dose proportional to the water equivalent depth. The measurement conditions in white polystyrene and water phantoms for 10MV X-ray beam are that the distance of source to center of ionization chamber is fixed at SAD 100 cm, the field sizes are $10{\times}10\;cm^2$, $20{\times}20\;cm^2$ and the depths are 2.3 cm, 5 cm, 10 cm, and 15 cm, respectively. The mean value of ionization was obtained by three times measurements in each field size and depths after delivering 100 MU from linear accelerator with output of 400 MU per min to the two phantoms. The correction factor and the percentage deviation in TPR were obtained below 0.97% and 0.53%, respectively. Therefore, we can get high accuracy by using the correction factor and the percentage deviation in TPR in measuring the absolute absorbed dose with the solid water equivalent phantom.

  • PDF

Dose Distribution in Solid Phantom by TLD with a Metal Plate of Various Thicknesses (다양한 두께의 금속판을 얹은 TLD를 이용하여 구한, 고체 팬텀 내에서의 선량분포)

  • Kim, Sookil
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 1999
  • Purpose: TLD experiments were set up to measure the dose distribution and to analyze the influence on dose measurement of thin metal plate and solid water phantom. The aim of the present study was to investigate the build-up effect of metal plate loaded on TLD chip and depth dose in the controlled environment of phantom measurements. Materials and Methods: Measurements were done by using LiF TLD-100 loaded by a thin metal plate with the same surface area (3.2$\times$3.2 $\textrm{mm}^2$) as TLD chip. TLD chips loaded with one metal plate from three different metal plate (Tin, Copper, Gold) of different thicknesses (0.1, 0.15, 0.2, 0.3 mm) were used respectively to measure radiation dose. Using the TLD loaded with one metal plate, surface dose and the depth dose at the build-up maximum region were investigated. Results: Using a metal plate on TLD chip increased the surface dose. Surface dose curve shows the dose build-up against equivalent thickness of metal to water. The values of TL reading obtained by using metal plate at depth of build-up maximum are about 8% to 13% lower than those obtained by normal TLD chip. Conclusion: The metal technique used for TLD dosimetry could provide clinicals information about the build-up of dose up to 4.2mm depth in addition to a depth dose distribution. The results of TLD with a metal plate measurements may help with decisions to boost or bolus certain areas of the skin.

  • PDF

The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams (6MV 광자선에서 측정 조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교)

  • 김회남;박성용;서태석;권수일;윤세철
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.87-102
    • /
    • 1997
  • The absolute absorbed dose can be determined according to the measurement conditions; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of 10cm $\times$ 10cm field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations of phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG21 and IAEA protocol. The differences between two protocols are within 1% while the average value of IAEA protocol was 0.5% smaller than TG21 protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within 1%, but individual discrepancies are in the range of - 2.5% to 1.2% depending upon the choice of measurement combination. The largest discrepancy of - 2.5% was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coeficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, it shows that absorbed dose could be affected by phantom material other than water.

  • PDF

Dose Distribution According to the Tissue Composition Using Wedge Filter by Radiochromic Film (쐐기필터 사용 시 레디오크로믹 필름을 이용한 조직에 따른 선량분포 연구)

  • Kim, Yon-Lae;Lee, Jeong-Woo;Park, Byung-Moon;Jung, Jae-Yong;Park, Ji-Yeon;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • The purpose of this study is to analyze the dose distribution when wedge filter is used in the various tissue electron density materials. The dose distribution was assessed that the enhanced dynamic wedge filter and physical wedge filter were used in the solid water phantom, cork phantom, and air cavity. The film dosimetry was suitable simple to measure 2D dose distribution. Therefore, the radiochromic films (Gafchromic EBT2, ISP, NJ, USA) were selected to measure and to analyze the dose distributions. A linear accelerator using 6 MV photon were irradiated to field size of $10{\times}10cm^2$ with 400 MUs. The dose distributions of EBT2 films were analyzed the in-field area and penumbra regions by using dose analysis program. In the dose distributions of wedge field, the dose from a physical wedge was higher than that from a dynamic wedge at the same electron density materials. A dose distributions of wedge type in the solid water phantom and the cork phantom were in agreements with 2%. However, the dose distribution in air cavity showed the large difference with those in the solid water phantom or cork phantom dose distributions. Dose distribution of wedge field in air cavity was not shown the wedge effect. The penumbra width, out of the field of thick and thin, was observed larger from 1 cm to 2 cm at the thick end. The penumbra of physical wedge filter was much larger average 6% than the dynamic wedge filter. If the physical wedge filter is used, the dose was increased to effect the scatter that interacted with photon and physical wedge. In the case of difference in electron like the soft tissue, lung, and air, the transmission, absorption, and scattering were changed in the medium at high energy photon. Therefore, the treatment at the difference electron density should be inhomogeneity correction in treatment planning system.

Study of Radiation dose Evaluation using Monte Carlo Simulation while Treating Extrahepatic Bile Duct Cancer with High Dose Rate Intraluminal Brachytherapy (간외 담도암 고선량률 관내근접방사선치료 시 몬테카를로 시뮬레이션을 통한 주변장기의 선량평가 연구)

  • Park, Ju-Kyeong;Lee, Seung-Hoon;Cha, Seok-Yong;Lee, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.467-474
    • /
    • 2014
  • The relative dose calculated by MCNPX and the relative dose measured by ionization chamber and solid phantoms evaluated the accuracy comparing with Monte Carlo simulation. In order to apply Monte Carlo simulation the intraluminal brachytherapy of extrahepatic bile duct cancer, 192Ir sealed radioactive source replicate, Bile duct and surrounding organs were made using KMIRD phantom based on a South Korea standard man. To check the absorbed dose of normal organs around bile duct, we set the specific effective energy and initial radioactivity to 1 Ci using MCNPX. Evaluation of the accuracy of the Monte Carlo simulation, the difference of the relative dose is the most 1.96% that satisfy the criteria that is the relative error less than 2% suggested by MCNPX code. In addition, The specific effective energy and absorbed dose of normal organs that were relatively adjacent to bile duct such as right side of kidney, liver, pancreas, transverse colon, spinal cord, stomach and small intestine were relatively high. on the contrary, the organs that were relatively distant to bile duct such as left side of kidney, spleen, ascending colon, descending colon and sigmoid colon were relatively low.

Comparative evaluation for leaf position accuracy according to gantry angle variation in MLC quality assurance using electronic portal imaging device(EPID) and GafChromic EBT3 film (전자포탈영상장치(EPID)와 GafChromic EBT3 film을 이용한 다엽콜리메이터 정도관리 시 갠트리 각도 변화에 따른 엽의 위치 정확성 비교 평가)

  • Yang, Myung Sic;Park, Ju Kyeong;Lee, Seung Hun;Lee, Sun Young;Kim, Jung Soo;Kwon, Hyoung Cheol;Kim, Yang Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 2017
  • Objectives: The purpose of this study was to evaluate the error of the leaf position accuracy of the MLC due to the gravity effect according to the gantry angle by using picket fence test using EPID and GafChromic EBT3 film. Materials and Methods: A 5 cm solid phantom was placed on the table and the SAD was set to 100 cm. The EBT3 film was placed exactly over the solid phantom and covered a 1.5 cm solid phantom and the picket fence test was performed. The EPID was measured under the same conditions as the EBT3 film at SID 100 cm. The gantry angles were measured at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$ in order to evaluate the position of the MLC according to the gantry angle. For the geometric evaluation of the MLC, the leaf position accuracy of the MLC was analyzed using the analysis program. Results: In case of EPID, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.18 mm, 0.31 mm, 0.20 mm, 0.26 mm on the average and the maximum values of the errors were respectively 0.44 mm, 0.54 mm, 0.34 mm, 0.44 mm. In case of EBT3 film, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.19 mm, 0.21 mm, 0.19 mm, 0.31 mm on the average and the maximum values of the errors were respectively 0.35 mm, 0.45 mm, 0.36 mm, 0.48 mm. Conclusion: In this study, we analyzed the position error of the leaf of the MLC according to the gantry angle, and confirmed the position error of the leaf by gravity effect. As a result of comparing the leaf position accuracy using EPID and EBT3 film according to the variation of gantry angle, a larger error occurred in the error analysis method using EPID than that of EBT3 film. Therefore, in the case of IMRT based on MLC, as well as verification of accurate dosimetry should be conducted, it is considered that the quality control and verification for the precise operation of the MLC will be needed. and it is necessary to compare and verify the method of analysis.

  • PDF