고체나 액체 추진로켓에 비하여 하이브리드 추진 시스템은 작동조건의 안정성과 안전함등의 많은 장점을 가지고 있다. HTPB와 같은 고체연료는 제작 및 저장, 운송 그리고 장착상의 안정성을 가지고 있으며 하이브리드 로켓의 고체연료로의 산화제의 유입을 제어하면서 추력의 변화와 엔진내부의 연소중단과 재 점화를 용이하게 할 수 있다. 이러한 이유로 인하여 하이브리드 엔진은 좀 더 경제적인 장치로 기대를 모으고 있다. 그러나, 기존의 하이브리드 로켓 엔진은 고체 추진 로켓에 비하여 낮은 연료 regression 율과 연소효율을 가지는 단점이 있다. 이러한 단점을 해결하고 요구되어지는 추력값과 연료유량을 증가시키기 위하여 고체연료의 표면적을 증가시킬 필요가 있다. 기존의 하이브리드 엔진에서는 연료 그레인에 다수의 연소포트를 만들어 표면적을 증가시켰으나 이는 비 활용 공간의 증가와 추진제의 질량 및 체적분율의 상당한 감소를 초래한다. 지난 수십년간에 걸쳐 하이브리드 엔진에서 연료의 regression 특성 및 엔진 성능 향상을 위한 연구가 계속되어 왔으며 최근에 엔진의 체적 규제를 경감시키고 연료의 regression율을 향상시키기 위하여 선회유동을 이용하는 하이브리드 로켓 엔진들이 제안되고 있다. 이러한 선회유동을 가지는 하이브리드 로켓은 고체연료 그레인에 대하여 평행하게 유입되는 기존의 하이브리드 로켓에 비하여 고체연료 벽면에서의 대류열전달이 현저하게 증가하게 되어 아주 높은 고체연료의 regression율을 얻을 수 있는 이점이 있다. 선회유동 하이브리드 로켓의 연소과정은 고체 연료의 열분해과정, 대류 열전달, 난류 혼합, 난류와 화학반응의 상호작용, soot의 생성 및 산화과정, soot 입자 및 연소가스에 의한 복사 열전달, 연소장과 음향장의 상호작용 등의 복잡한 물리적 과정을 포함하고 있다. 이러한 물리적 과정 중 난류연소, 고체연료 벽면 근방에서의 대류 열전달 및 연소과정에서 생성되는 soot 입자로부터의 복사 열전달, 그리고 고체연료 열 분해시 표면반응들은 고체연료의 regression율에 큰 영향을 미친다. 특히 고체연료의 난류화염면의 위치와 폭, 그리고 비 예혼합 난류화염장에서 생성되는 soot의 체적분율의 예측은 난류연소모델, 열전달 모델, 그리고 regression율 모델에 의해 크게 영향을 받기 때문에 수치모델의 예측 능력 향상시키기 위하여 이러한 물리적 과정을 정확히 모델링해야 할 필요가 있다. 특히 vortex hybrid rocket내의 난류연소과정은 아래와 같은 Laminar Flamelet Model에 의해 모델링 하였다. 상세 화학반응 과정을 고려한 혼합분율 공간에서의 화염편의 화학종 및 에너지 보존 방정식은 다음과 같다. 화염편 방정식과 혼합분률과 scalar dissipation rate의 관계식을 이용하여 혼합분률과 scalar dissipation rate에 따른 모든 reactive scalar들을 구하게 된다. 이러한 화염편 방정식들을 mixture fraction space에서 이산화시켜서 얻은 비선형 대수방정식은 TWOPNT(Grcar, 1992)로 계산돼 flamelet Library에 저장되게 된다. 저장된 laminar flamelet library를 이용하여 난류화염장의 열역학 상태량 평균치는 presumed PDF approach에 의해 구해진다. 본 연구에서는 강한 선회유동을 가지는 Hybrid Rocket 연소장내의 난류와 화학반응의 상호작용을 분석하기 위하여 Laminar Flamelet Model, 화학평형모델, 그리고 Eddy Dissipation Model을 이용한 수치해석결과를 체계적으로 비교하였다. 또한 Laminar Flamelet Model과 state-of-art 물리모델들을 이용하여 선회 유동을 갖는 하이브리드 로켓 엔진의 연소 및 Soot 생성 및 산화과정을 살펴보았으며 복사 열전달이 고체 연료 표면의 regression율에 미치는 영향도 살펴보았다. 특히 swirl강도, 산화제의 유입위치 그리고 선회유동의 형성방식이 하이브리드 로켓의 연소특성 및 regression rate에 미치는 영향을 상세히 해석하였다.
비행탄의 종말속도증대를 위하여 고체램제트를 이용하는 개념은 현재 세계적으로 여러나라에서 연구 중에 있다. Solid Fuel Ramjet Propulsion(고체연료 렘제트 추진)은 로켓추진에 비하여 월등히 높은 비추력을 가지며 구조적으로 매우 간단하여 탄의 사거리 및 평균속도를 증대시키는 좋은 수단으로 사용되고 있다. 그러나 간단한 구조에도 불구하고 고체렘제트의 작동은 매우 다양한 물리적 현상이 연관되므로 필요한 성능을 얻기 위해서는 이들의 상호 작용을 고려하여 설계의 최적화 및 성능 예측이 필요하다.
하이브리드 추진에서 연소특성을 나타내는 후퇴율 식을 초기 포트면적으로 나눈 산화제 유속이 고려된 고체연료 유속의 관계식으로 표현하였다. 초기 포트면적을 고려한 산화제 유속을 이용하여 반복 수행 없이 연소율을 쉽게 구할 수 있었고, 고체연료 유속 관계식으로 연료 형상을 간단히 설계할 수 있는 기법에 대한 연구를 수행하였다. 본 연구의 실험에서는 연료로 PE, 산화제로 GOX를 사용하였으며, 연소시간을 다양하게 하여 포트면적 변화에 따른 유속의 변화를 고려하였다. 하이브리드 추진에서, 산화제 유속의 지수가 0.5에 근접할 경우 후퇴율 관계식 보다는 고체연료 유속 관계식을 사용하는 것이 더 적합함을 확인하였다.
공기흡입형 추진기관의 가스발생기에 사용하기 위한 연료과농(Fuel-rich) 고체 추진제의 특성에 대한 연구를 수행하였다. 일반적인 고체 추진제는 평균 60%이상의 산화제를 포함하는 데, 연료과농 고체 추진제를 개발히기 위해 산화제 함량을 30%내외로 낮추고 매우 높은 부피당 열량을 가지는 비정질 붕소를 입자화(Bead)하여 금속연료 함량을 증가시켜 고체 추진제의 제조 공정성 및 연소속도 특성을 확인하였다. 과립화붕소의 입도가 작을수록 추진제 제조 공정에서 초기 점도가 높아지고, 입도가 클수록 연소속도 및 압력지수가 증가하는 것을 확인할 수 있었다.
덕티드 로켓의 가스발생기에 사용되는 추진제는 연료과농 추진제로서, 일반적인 고체 로켓 추진제에 비하여 과량의 금속연료와 소량의 산화제를 포함한다. 본 논문에서는 연료과농 추진제를 제조하기 위하여 보론 분말과 MgAl(Magnesium-Aluminium Alloy)를 적용하였다. 이 금속연료를 적용한 추진제의 특성을 분석하였고, 이를 통하여 최적의 조성을 연구하였다. 추진제의 연소생성물 분석을 통하여 보론 비드가 아닌 미립의 보론 분말로도 가스발생기용 연료과농 추진제가 가능함을 확인하였다.
고체연료는 추진제 연소 시 산화제와 반응하여 추진제 성능을 증가시키는 역할을 한다. 대표적인 고체연료는 Al, RDX, HMX 등이 있다. 이들 물질은 연소 시 수분과 만나 흰색 연기를 발생시키고, 일산화탄소, 이산화탄소, 메탄가스 등의 환경유해 물질을 다량 발생시킨다. 이러한 문제를 해결하기 위해 본 연구에서는 고체 연료로 사용 가능한 고질소 에너지 물질인 hydrazinium 5-aminotetrazolate(HAT)를 제조하였다. 분광분석(NMR)을 통해 HAT의 구조를 분석하였으며, DSC를 이용하여 열특성 분석을 하였다. 또한, EXPLO5 프로그램을 이용하여 비추력, 가스발생량 등을 계산하였다.
일반적으로 하이브리드 추진에서 산화제 질량유속만의 함수로 표현되는 후퇴율 식은 고체연료 길이에 따른 후퇴율 변화를 나타내지 못한다. 따라서 본 연구에서는 분할 연료 그레인을 적용해 쉽게 할 수 있는 연소 실험을 수행했고, 고체연료 길이에 따른 후퇴율의 변화를 고찰하였다. 연료 그레인 상단부에서 하단부로 갈수록 후퇴율은 감소하다가, 다시 증가하는 경향을 나타남을 확인 하였고, 산화제 질량유속과 그레인 길이의 함수로 표현할 수 있는 후퇴율 식을 도출하였다.
하이브리드 로켓은 고체 및 액체 로켓에 비해 많은 장점을 가지고 있다. 본 연구에서는 선회류 하이브리드 로켓을 디자인 및 제작하여 고체 연료 후퇴율 향상 방법에 대해 연구되었다. 산화제 유량 조건에 대해 추력이 계산되었으며 초음파 센서를 이용하여 전체 연소 조건에 대해 고체 연료의 후퇴율을 측정하였다. 본 연구에서는 PMMA 고체 연료 및 HTPB 고체 연료가 사용되었다.
혼합용 임펠러를 장착한 연료탱크의 액체연료와 미세 고체입자의 부유, 혼합 현상을 분석하고자 2차원 혼합 유동 수치해석을 수행하였다. 다상 유동해석은 Eulerian Grandular Multiphase 기법을 사용하였고, 해석기법을 12vol% 고체 혼합 조건 실험의 축방향 고체 농도 분포와 비교하여 확인하였다. 해석용 연료탱크는 10.5vol% 고체입자를 액체연료와 혼합하는 것으로 회전수 700rpm 조건에서 4가지 경우의 임펠러 위치와 유속 조건으로 해석을 수행하였다. 각 경우에 대한 Quality of Suspension 결과를 비교하여 적합한 임펠러 위치와 속도방향을 확인하였다.
멀티포트 하이브리드 로켓 고체연료 그레인의 열민감도에 관한 연구를 수행하였다. 고온의 비반응 유동의 포트를 통과하며 연료 그레인으로 열전달 시, 연료 그레인 내부의 온도 분포 변화를 비정상 열해석을 통해 계산하였다. 계산은 총 9개의 포트 반경에서 수행되었으며, 연료 내부 온도가 민감하게 거동하는 임계 포트 반경을 결정하였다. 열에 민감하게 반응하는 임계 포트반경 이후는 고체 폴리머 연료의 구조상의 취약점이 발생할 것으로 판단되므로, 임계 포트반경은 설계 시 중요한 고려대상으로 사용될 것으로 예상된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.