• Title/Summary/Keyword: 고차의 수심효과

Search Result 4, Processing Time 0.016 seconds

Ebersole-Type Wave Transformation Model Usiog Extended Mild-Slope Equations (확장형 완경사방정식을 이용한 Ebersole형 파랑변형 모형)

  • Jeong, Sin-Taek;Lee, Chang-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.845-854
    • /
    • 1998
  • Following the approach of Ebersole (1985), water wave transformation is predicted using the eikonal equation and transport equation for wave energy which are reduced from the extended mild-slope equation of Massel (1993), and also the irrotationality of wave number vectors. The higher-order bottom effect terms, i.e., squared bottom slope and bottom curvature, are neglected in the study of Ebersole but are included in the present study. It was expected that, if these terms are included in this study, the approach would give more accurate solution in the case of rapidly varying topography. But, the expectation was frustrated. It is probably because, in the case of rapidly varying topography, the diffraction effect which is included in the eikonal equation does not work well and thus the solution is deteriorated.

  • PDF

Derivation of Weakly Nonlinear Wave Equations with Higher-Order Bottom Effects (고차수심효과를 가지는 비선형 파동방정식의 유도)

  • 윤성범;최준우;이종인
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.95-102
    • /
    • 2000
  • 선형분산을 가정한 Berkhoff(1972)의 완경사방정식은 단일주기파(monochromaticwave)에 대해 심해로부터 천해까지 수심에 제한 없이 파랑의 변형을 해석할 수 있으나 식의 유도과정 중 바닥이 완경사(|∇h|/kh≪1) 라는 가정을 도입함으로써, 바닥곡률항(∇$^2$h)과 바닥경사의 제곱항(|∇h|$^2$)으로 대표되는 고차수심효과를 무시하였다. (중략)

  • PDF

A Study on the Sloshing of Cargo Tanks Including Hydroelastic Effects (유탄성을 고려한 탱크내 슬로싱에 대한 연구)

  • Dong-Yeon Lee;Hang-Shoon Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.27-37
    • /
    • 1998
  • The sloshing is very important in a safe transport of the liquid cargo by a ship. With the increasing number of supertanker and LNG carriers, this problem has become increasingly more important. In order to study the magnitude and characteristics of impact pressures due to sloshing, experiments ware performed with a rectangular tank and compared with numerical results. Structural responses of tank wall under impulsive pressures were measured. Structural vibrations induced by the sloshing load were analysed by including hydroelastic erects in terms of added mass and damping. To check the validity of the numerical model, the natural frequencies of plate in air and water were compared with measurements, and a good agreement was found. In the case that a plate vibrates under impulsive loads, the pressure on the flexible plate is larger than that on the rigid plate without hydroelastic effects, which was confirmed experimentally. The frequency of oscillatory pressure as well as accel%pion coincides with the natural frequency of plate in water.

  • PDF