Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.16-18
/
2001
데이터마이닝 기법 중의 하나인 플러스터링은 대용량 데이터베이스에서 유사한 특징을 가진 객체들을 집단화하는데 사용되는 매우 유용한 분석방법이다. 그러나 대부분의 클러스터링 알고리즘들은 고차원 데이터에서는 성능이 급격히 저하된다. 이것은 고차원 데이터 집합이 상당한 양의 잡음을 포함하고 있기 때문이며 고차원 데이터 고유의 희소성에 기인한다. 이에 따라 고차원 데이터의 구조와 특성을 지원하는데 적합한 클러스터링 기법이 개발되고 있다. 본 논문에서는 고차원 클러스터링에서 잡음 데이터를 효과적으로 제거하기 위한 새로운 알고리즘을 제안하는데, 이 일고리즘은 고차원 데이터의 저차원으로의 변환에 기초한다. 저 차원으로 변환을 위해 2차원 프로젝션을 이용하며, 반복적으로 2차원 프로젝션을 적용하여 잡음을 단계적으로 최소화한다. 이와 같은 2차원 프로젝션은 잡음을 점차적으로 줄여줄 뿐 아니라, 데이터 분포에 대한 시각화 작업에도 용이하다.
Most of clustering algorithms data to degenerate rapidly on high dimensional spaces. Moreover, high dimensional data often contain a significant a significant of noise. which causes additional ineffectiveness of algorithms. Therefore it is necessary to develop algorithms adapted to the structure and characteristics of the high dimensional data. In this paper, we propose a clustering algorithms CLIP using the projection The CLIP is designed to overcome efficiency and/or effectiveness problems on high dimensional clustering and it is the is based on clustering on each one dimensional subspace but we use the incremental projection to recover high dimensional cluster and to reduce the computational cost significantly at time To evaluate the performance of CLIP we demonstrate is efficiency and effectiveness through a series of experiments on synthetic data sets.
Many applications require the clustering of large amounts of high dimensional data. Most automated clustering techniques have been developed but they do not work effectively and/or efficiently on high dimensional (numerical) data, which is due to the so-called “curse of dimensionality”. Moreover, the high dimensional data often contain a significant amount of noise, which causes additional ineffectiveness of algorithms. Therefore, it is necessary to look over the structure and various characteristics of high dimensional data and to develop algorithm that support clustering adapted to applications of the high dimensional database. In this paper, we investigate and classify the existing high dimensional clustering methods by analyzing the strength and weakness of each method for specific applications and comparing them. Especially, in terms of efficiency and effectiveness, we compare the traditional algorithms with CLIP which are developed by us. This study will contribute to develop more advanced algorithms than the current algorithms.
The large amounts of high dimensional data contains a significant amount of noises by it own sparsity, which adds difficulties in high dimensional clustering. The CLIP is developed as a clustering algorithm to support characteristics of the high dimensional data. The CLIP is based on the incremental one dimensional projection on each axis and find product sets of the dimensional clusters. These product sets contain not only all high dimensional clusters but also they may contain noises. In this paper, we propose extended CLIP algorithm which refines the product sets that contain cluster. We remove high dimensional noises by applying two dimensional projections iteratively on the already found product sets by CLIP. To evaluate the performance of extended algorithm, we demonstrate its effectiveness through a series of experiments on synthetic data sets.
Proceedings of the Korean Information Science Society Conference
/
1998.10b
/
pp.247-249
/
1998
최근 들어 내용기반의 이미지 검색을 지원하기 위한 방법으로, 특징 벡터를 이용한 유사 질의 연구가 활발히 진행되고 있다. 이러한 유사 질의를 효율적으로 지원하기 위해서는 고차원 공간상에 존재하는 점 데이터나 공간 데이터를 효과적으로 색인할 수 있는 색인 기법이 필요하다. 하지만 R*-트리를 바탕으로 하는 기존의 방법들은 고차원 데이터에 대해서 차원의 증가함에 따라 검색 시간이 급격하게 증가하는 문제점을 안고 있다. 이러한 문제는 데이터의 클러스터링에 기반을 둔 기존의 방법들이 차원이 증가함에 따라 데이터를 제대로 클러스터링하지 못하기 때문에 발생하며, 따라서 이를 해결하기 위해서는 효과적인 클러스터링 기법이 필요하다. 본 논문에서는 하나의 최소 한계 영역(minimum bounding region)에 속하는 개체들의 응집 정도와 최소 한계 영역들간의 결합 정도를 고려하여 효과적으로 클러스터링하는 방안을 제안한다. 또한 이러한 클러스터링 기법을 수용하기 위한 색인 기법을 간략히 제시한다
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.7
/
pp.816-820
/
2004
Clustering is a process of dividing similar data objects in data set into clusters and acquiring meaningful information in the data. The main issues related to clustering are the effective clustering of high dimensional data and optimization. This study proposed a method of measuring similarity based on SVM and a new method of calculating the number of clusters in an efficient way. The high dimensional data are mapped to Feature Space ones using kernel functions and then similarity between neighboring clusters is measured. As for created clusters, the desired number of clusters can be got using the value of similarity measured and the value of Δd. In order to verify the proposed methods, the author used data of six UCI Machine Learning Repositories and obtained the presented number of clusters as well as improved cohesiveness compared to the results of previous researches.
Proceedings of the Korean Information Science Society Conference
/
2000.10a
/
pp.189-191
/
2000
데이터 마이닝의 방법론 중 클러스터링은 데이터베이스 객체들의 에트리뷰트 값에 근거하여 유사한 그룹으로 식별하는 기술적인 작업이다. 그러나 대부분 알고리즘들은 데이터의 차원이 증가할수록 형성된 전체 데이터 공간은 매우 방대하므로 의미있는 클러스터의 탐색이 더욱 어렵다. 따라서 효과적인 클러스터링을 위해서는 클러스터가 포함될 데이터 공간의 예측이 필요하다. 본 논문에서는 고차원 데이터에서 각 차원에 대한 점진적 프로젝션을 이용한 클러스터링 방법을 제안한다. 제안한 방법에서는 클러스터가 포함될 가능성이 있는 데이터공간의 후보영역을 결정하여, 이 영역에서 점들의 평균값을 중심으로 클러스터를 탐색한다.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.33-36
/
2011
클러스터링은 데이터 포인트들을 그룹으로 묶어 데이터를 분석하는데 유용하다. 특히 K-means는 가장 널리 쓰이는 클러스터링 알고리즘으로 k개의 군집(Cluster)을 찾는다. 본 논문에서는 기존의 K-means 알고리즘과 비교해 고차원 대규모데이터에 대해서 효율적으로 동작하는 K-means 알고리즘을 제안한다. 제안된 알고리즘은 기존의 알고리즘에서와 같이 거리 정보를 이용해 불필요한 계산을 줄여나가며 또한 움직임 없는 군집들을 계산에서 제외하여 수행시간을 단축한다. 제안된 알고리즘은 기존의 관련연구에서 제안된 알고리즘에 비해 공간을 적게 쓰면서 동시에 빠르다. 실제 고차원 데이터 실험을 통해서 제안된 알고리즘의 효율성을 보였다.
The problem of finding clusters in high dimensional data is well known in the field of data mining for its importance, because cluster analysis has been widely used in numerous applications, including pattern recognition, data analysis, and market analysis. Recently, a new framework, projected clustering, to solve the problem was suggested, which first select subdimensions of each candidate cluster and then each input point is assigned to the nearest cluster according to a distance function based on the chosen subdimensions of the clusters. We propose a new algorithm for subdimensional clustering of high dimensional data, each of the three major steps of which partitions the input points into several candidate clutters with proper numbers of points, filters the clusters that can not be useful in the next steps, and then merges the remaining clusters into the predefined number of clusters using a closeness function, respectively. The result of extensive experiments shows that the proposed algorithm exhibits better performance than the other existent clustering algorithms.
Recently, data mining applications require a large amount of high-dimensional data Most algorithms for data mining applications however, do not work efficiently of high-dimensional large data because of the so-called curse of dimensionality[1] and the limitation of available memory. To overcome these problems, this paper proposes a new cell-based clustering which is more efficient than the existing algorithms for high-dimensional large data, Our clustering method provides a cell construction algorithm for dealing with high-dimensional large data and a index structure based of filtering .We do performance comparison of our cell-based clustering method with the CLIQUE method in terms of clustering time, precision, and retrieval time. Finally, the results from our experiment show that our cell-based clustering method outperform the CLIQUE method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.