• Title/Summary/Keyword: 고정하중 응력

Search Result 131, Processing Time 0.024 seconds

Structural Analysis for Optimal Design of Anchor Bolts and Brackets for Fixing External Finishing Materials (외부마감재 고정용 앙카볼트 및 브라켓의 최적설계를 위한 구조해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2020
  • For the anchor bolts and brackets that fix the stone wall, which is an external finishing material, it is necessary to maintain the performance required for the mechanical structure from the initial design stage and secure high durability. For this, the design and safety evaluation in consideration of the load conditions are necessary, so the structural analysis applying the finite element analysis technique was performed as a method to verify durability. As a result of structural analysis for various shapes for optimal design, a reinforcing structure was added to alleviate the maximum stress generated at the rear part of the bracket in contact with the bolt. In addition, a reinforcing plate was additionally attached to the bracket to relieve the stress concentration of the L-shaped bracket to make the stress distribution uniform, so that the safety factor satisfies the standard conditions. In addition, the fatigue life analysis by cyclic load was performed, and the fatigue safety factor was analyzed. As a result, the durability was obtained.

A Simplified Analysis Method for Determining an Optimized Initial Shape of Cable-Stayed Bridges (사장교의 최적 초기형상 및 무응력길이 결정을 위한 간략해석법)

  • Jung, Myung Rag;Park, Se Woong;Min, Dong Ju;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.947-954
    • /
    • 2016
  • A simplified analysis method is first proposed in order to determine an optimized initial shape of cable-stayed bridges including all unstrained element lengths without using complicated nonlinear FE analysis. The unstrained-length based FE method is then presented using the unstrained lengths by the simplified analysis. To demonstrate validity and accuracy of the proposed method, Incheon bridge model having the fabrication camber is constructed and initial shaping analysis is performed using the presented method and commercial finite element analysis program, MIDAS. Resultantly it is shown that the initial solutions by the proposed algorithm are well optimized and in good agreement with those by MIDAS except for axial displacements of the main member.

Mechanical Performance Evaluation of a Top End Piece for Dual Cooled Fuels (이중냉각 핵연료 상단고정체의 기계적 성능평가)

  • Kim, Jae-Yong;Yoon, Kyung-Ho;Kim, Hyung-Kyu;Choi, Woo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.417-424
    • /
    • 2011
  • A fuel assembly consists of five major components, i.e., a top end piece (TEP), a bottom end piece (BEP), spacer grids (SGs), guide tubes (GTs) and an instrumentation tube (IT); in addition, it also includes fuel rods (FRs). The TEP/BEP should satisfy stress intensity limits according to the conditions A and B of ASME, Section III, Division 1-Subsection NB. In a dual-cooled fuel assembly, the array and position of fuel rods are different from those in a conventional PWR fuel assembly; these changes are necessary for achieving power uprating. The flow plates of the TEP and BEP have to be modified accordingly. The pattern and shape of the flow holes were newly designed. To verify the strength compatibility, the Tresca stress limit according to the ASME code was investigated in the case of an axial load of 22.241 kN. In this paper, the stress linearization procedure for strength evaluation of a newly designed TEP is presented.

Anchorage efficiency of mold-type anchorage for CFRP plates (CFRP판 긴장재를 위한 부착형 정착장치의 정착성능)

  • Park, Jong-Sup;Park, Young-Hwan;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.169-172
    • /
    • 2008
  • Carbon fiber reinforced polymer (CFRP) laminates can be used more efficiently in strengthening applications by applying prestress to the CFRP laminates. A key problem for prestressing with CFRP laminates is anchoring the laminates. These may include fracture to the CFRP laminates due to excessive gripping force or slippage of the CFRP laminates out of the anchorage zone caused by low friction between the anchor device and the lamiantes. The main objective of this study is the development of an applicative mold-type anchorage system for prestressed CFRP laminates through experimental study. The experimental parameters were the type of anchorage detail and the effect of surface treatment. The test results showed that the developed anchor assures 100% CFRP laminate strength.

  • PDF

The Effects of Screw Retained Prosthesis Misfit & Cantilever on Stress Distribution in Bone Around the Implant (나사유지형 임플란트 고정성 보철물의 적합도와 캔틸레버가 지지골조직의 응력분산에 미치는 영향)

  • Lee, Jae-In;Kim, Tae-Young;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.224-235
    • /
    • 2013
  • A passively fitting prosthesis is an essential prerequisite to attain long-lasting success and maintenance of osseointegration. However, true "passive fit" can not be achieved with the present implant-supported prosthesis fabrication protocol. Many clinical situations are suitably treated with cantilevered implant-supported fixed restorations. The purpose of this study was to compare the stress distribution pattern and magnitude in supporting tissues around ITI implants with cantilevered, implant-supported, screw-retained fixed prosthesis according to the fitness of superstructures. Photoelastic model was made with PL-2 resin (Measurements, Raleigh, USA) and three ITI implants (${\phi}4.1{\times}10mm$) were placed in the mandibular posterior edentulous area distal to the canine. Anterior and posterior extended 4-unit cantilevered FPDs were made with different misfit in the superstructures. 4 types of prosthesis were made by placing a $100{\mu}m$ gap between the abutment and the crown on the second premolar and/or the first molar. Photoelastic stress analysis were carried out to measure the fringe order around the implant supporting structure under simulated loading conditions (30 lb).

Damage Evaluation of Offshore Jacket Structure (해양플랜트 자켓 구조물의 손상평가)

  • Park, Soo-Yong;Kim, Eun-Hye;Jeon, Yong-Hwan;Kim, Han-Sam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.195-198
    • /
    • 2011
  • 석유 및 천연가스 생산에 사용되는 고정식 해양플랜트에는 자켓 구조물이 가장 많이 사용되고 있다. 생산에 사용되는 자켓 구조물은 풍하중이나 파랑하중에 의해 인명의 피해 없이 변위 및 응력에 대해 안전해야 한다. 그러나 1940년대 후반부터 사용되어 온 자켓 구조물은 피로하중, 노후화로 인해 내구성에 문제가 생기고 있다. 본 논문에서는 자켓 구조물의 안전성을 검토하기 위해 모드형상을 이용하여 자켓 구조물의 손상 위치를 탐색하는 방법을 제시한다. 제시한 손상탐지기법의 효용성을 입증하기 위해 자켓 구조물의 유한요소모델에 임의의 손상을 모사하였다. 유한요소모델의 손상 전 모드형상과 손상 후 모드형상의 모달 변형에너지의 변화를 이용하여 손상 지수를 유도하고 유도한 손상지수를 사용하여 손상이 있는 부재와 손상이 없는 부재를 분류하였다. 연구 결과 손상지수가 '0'인 부재를 제외한 나머지 부재 모두 본 연구에서 제시한 손상탐지기법으로 손상 부재를 판별할 수 있었다.

  • PDF

Effect of prosthetic designs and alveolar bone conditions on stress distribution in fixed partial dentures with pier abutments (중간 지대치가 존재하는 고정성 국소의치에서 보철물 설계 및 치조골 상태가 응력분포에 미치는 영향)

  • Cho, Wook;Kim, Chang-Seop;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.3
    • /
    • pp.328-334
    • /
    • 2009
  • Statement of problem: Pier abutments act as a Class I fulcrum lever system when the teeth are incorporated in a fixed partial denture with rigid connectors. Therefore non-rigid connector incorporated into the fixed partial denture might reduce the stresses created by the leverage. Purpose: The purpose of this study was to evaluate, by means of finite element method, the effects of non-rigid connectors and supporting alveolar bone level on stress distribution for fixed partial dentures with pier abutments. Material and methods: A 2-dimensional finite element model simulating a 5-unit metal ceramic fixed partial denture with a pier abutment with rigid or non-rigid designs, the connector was located at the distal region of the second premolar, was developed. In the model, the lower canine, second premolar, and second molar served as abutments. Four types of alveolar bone condition were employed. One was normal bone condition and others were supporting bone reduced 20% height at one abutment. Two different loading conditions, each 150 N on 1st premolar and 1st molar and 300N on 1st molar, were used. Results: Two types of FPD were displaced apically. The amount of displacement decreased in an almost linear slope away from the loaded point. Non-rigid design tended to cause the higher stresses in supporting bone of premolar and molar abutments and the lower stresses in that of canine than rigid design. Alveolar bone loss increased the stresses in supporting bone of corresponding abutment. Conclusion: Careful evaluation of the retentive capacity of retainers and the periodontal condition of abutments may be required for the prosthetic design of fixed partial denture with a pier abutment.

Tests on Transfer Bond Performance of Epoxy Coated Prestressing Strands (에폭시 코팅 처리된 PS강선의 정착부착성능 실험)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.89-100
    • /
    • 1994
  • The current test procedure for transfer length, which determine transfer length by measuring concrete strain, has an actual bond stress state in the prestressed pretensioned member : however, it is difficult to determine the bond properties of maximum bond stress and bond stiffness with this method. It is also difficult for design engineer to understand and select a correct safety criterion from the widely distributed results of such a ransfer test alone. An alternative testing procedure is provided here to determine the bond properties without measuring the concrete strain. In this test the bond stress is measured directly by creating a similar boundary condition within the transfer length in a real beam during the transfer of prestressing force. The prestressing force was released step by step by step from the unloading side. The release of force induces a swelling of the strand at the unloading side of concrete block, bonding force in the block, and a bond slip of the strand toward the other side of the block. Two center-hole load cells are used to record the end loads until the point of general bond slip(maximum bond stress). It is suggested that this test procedure be performed with the ordinary transfer test when determining the transfer length in a prestressed, pretensioned concrete beam.

Finite Element Analysis of Stress Distribution around the Micro-Patterned Implants (마이크로패터닝을 부여한 임플란트 주변골에서의 하중 분포에 관한 유한요소분석법적 연구)

  • Hur, Bae-Young;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.67-76
    • /
    • 2008
  • Implant requires long lasting, strong osseointegration using bio-mechanical interlocking by bone ingrowth. In regarding the size level for bone ingrowth, the micro-patterning would enhance bone response. Micro-patterning can increase the area contacting the bone tissues. Therefore, it may distribute the load to the surrounding bone tissue, more effectively. This study compared and analyzed the load distributing effect with the shape and number of micro-patterning. For the optimal comparison of threads, the assumptions different from general finite element analysis model were made. It was assumed that the implant was axisymmetric and infinitely long. The implant was assumed to be completely embedded in the infinitely long cortical bone and to have 100% bone apposition. The implant-bone interface had completely fixed boundary conditions and received an infinitely big axial load. The condition of threads were as follows. The reference model 1 had conventional thread. Model 2 had 2 micro-patterns on the upper flank of the thread. Model 3 had 2 micro-patterns on the lower flank of the thread. Model 4 had 2 micro-patterns on the upper and lower flanks of the thread. Model 5 had 3 micro patterns on the upper and lower flanks of the thread. The results were as follows: 1. The thread with micro-patterns distributed stress better than the conventional thread. 2. The thread with micro-patterns on the lower flank distributed stress better than that with micro-patterns on the upper flank. 3. The thread with 3 micro-patterns distributed stress better than that with 2 micro-patterns, However, an area with stress concentration occurred.

A Study on the Safety Evaluation of the Landing Pier Structure Using FBG Sensor (FBG 센서를 이용한 잔교식 안벽 구조물의 안전성 평가에 대한 연구)

  • Lee, Heung-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.44-50
    • /
    • 2019
  • The underwater structures of landing pier are not easy to access and it is difficult to check the damage. Lately, typhoons and earthquakes have occurred frequently, which may cause damage to underwater structures of landing pier. In this study, to prevent collapse of underwater structures and to maintain systematically, the application method of FBG sensors and safety evaluation methods were studied. In order to confirm the application of the FBG sensor to the circular steel pipe used as a pile on the landing pier, we conducted laboratory tests and confirmed that the FBG sensor should be applied by welding. As a result of structural analysis of the landing pier structure, the optimal position of FBG sensor confirmed. The stresses on the dead load were calculated by structural analysis, the stresses on the live load were calculated by using the data obtained from the FBG sensor, and then the stress acting on the pile was calculated by adding the two stresses. The calculated stress was compared with the allowable stress to evaluate the safety of the pile. This study was carried out as a basic study to find a way to evaluate the safety of the landing pier in real time.