• Title/Summary/Keyword: 고정적층이론

Search Result 10, Processing Time 0.021 seconds

Study on the Thermo-Mechanical Behaviors of Fiber Metal Laminates Using the Classical Lamination Theory (고전적층이론을 이용한 섬유금속적층판의 열 . 거동 연구)

  • Choi, Heung-Soap;Roh, Hee-Seok;Kang, Gil-Ho;Ha, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.394-401
    • /
    • 2004
  • In this study the mechanical behaviors of fiber metal laminates(FMLs) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also, carpet plots of effective elastic moduli, Poisson's ratio and the thermal expansion coefficient for GLARE FML are plotted.

Residual Deformation Induced by the Repair of Composite Shell Structures (복합재료 쉘 구조물의 수리 시 발생하는 잔류변형)

  • 최항석;정의승;이수용
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 1999
  • Finite element analysis and experiment are performed to investigate residual deformation induced by the repair of composite shell structures using a prepreg patch method. The finite element program is developed on the basis of a three-dimensional degenerated shell element and the first order shear deformation theory. The results analyzed for the laminated shell with free boundary conditions are compared with strains measured during the prepreg patch repair. Final residual stresses occur greatly near the patch when the laminated shell with all edges clamped is repaired using the prepreg patch. Stacking sequences of the laminated shell and patch affect significantly the residual stresses which occur even if they are the same.

  • PDF

Vibration Analysis of Symmetrically Laminated Composite Rectangular Plates (대칭 복합적층 직사각형 판의 진동해석)

  • T.Y. Chung;J.H. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.140-148
    • /
    • 1992
  • The free vibration problem of symmetrically laminated composite rectangular plates is formulated based on anisotropic thick plate theory including the effects of shear deformation and rotary inertia. Considering the difficulty of obtaining closed-form solutions, Rayleigh-Ritz analysis using polynomials having the property of Timoshenko beam functions as trial functions is adopted. The boundary conditions elastically restrained against rotation are accomodated as well as classical boundary conditions. From the results of numerical studies, the validity of the present method is verified. And it is also found that the adoption of thick plate theory for the vibration analysis of laminated composite plates is essential because of the relatively large shear deformation effect, and that the convergence of the Rayleigh quotient to the stationary value is less rapid in anisotropic composite plates than that in the orthotropic ones due to more complicated mode shapes of the former.

  • PDF

Modeling of Damage Initiation in Singly Oriented Ply Fiber-Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링)

  • 남현욱;변현중;정성욱;한경섭
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2001
  • Modeling of damage initiation in singly oriented ply (SOP) Fiber Metal Laminate (FML) under concentrated loading conditions was studied. The finite element method (FEM) base on the first order shear deformation theory is used for th\ulcorner modeling of damage initiation in SOP FML. The failure indices (FI) of the fiber prepreg and the metal laminate were calculated by using the Tasi-Hill failure criterion and the Miser yield criterion, respectively. To verify the present method, the failure analysis was conducted under uniaxial loading and cylindrical bending, then the analysis under concentrated load was conducted. The results show that the analysis is reasonable. An indentation test was conducted to compare a damage initiation load with a calculated FI. The test was conducted under two side clamped conditions to study the fiber orientation effect. Indentation curve was fitted using the Hertz equation and a damage initiation load is defined that the point which deviate the fitted curve from the real indentation curve. The damage initiation loads were obtained under various fiber orientations and compared with calculated FIs. The experiment was well matched with calculated FI. This results shows that the present method is suitable for the damage initiation modeling of SOP FML.

  • PDF

An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory (개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.407-418
    • /
    • 2006
  • In this paper, an efficient yet accurate stress analysis based on the first-order shear deformation theory (FSDT) is presented. The transverse shear strain energy is modified via the mixed variational theorem, so that the shear correction factors are automatically involved in the formulation. In the mixed variational formulation, the transverse stresses are taken to be functions subject to variations. The transverse shear stresses based on an efficient higher order plate theory (EHOPT, Cho and Parmerter, 1993) are utilized and modified, while the transverse normal stress is assumed to be the third-order polynomial of thickness coordinates, which satisfies both zero transverse shear stresses and prescribed surface fractions in top and bottom surfaces. On the other hand, the displacements are assumed to be those of the FSDT Resulting strain energy expressions are referred to as an EFSDTM3D that stands for an enhanced first-order shear deformation theory based on the mixed formulation for three dimensional elasticity, The developed EFSDTM3D preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure that is based on the least square minimization of in-plane stresses. Comparisons of displacements and stresses of both laminated and sandwich plates using the present theory are made with the classical FSDT, three-dimensional exact solutions, and available data in the literature.

A study on the Thermal Buckling and Postbuckling of a Laminated Composite Beam with Embedded SMA Actuators (형상기억합금 선을 삽입한 복합적층 보의 열좌굴 및 좌굴후 거동에 관한 연구)

  • Choi, S.;Lee, J.J.;Lee, D.C.
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • In this paper, the thermal buckling and postbuckling behaviour of composite beam with embedded shape memory alloy (SMA) wires are investigated experimentally and analytically. The results of thermal buckling tests on uniformly heated, clamped, composite beam embedded with SMA wire actuators are presented and discussed in consideration of geometric imperfections, slenderness ratio of beam and embedding position of SMA wire actuators. The shape recovery force can reduce the thermal expansion of composite laminated beam, which result in increment of the critical buckling temperature and reduction of the lateral deflection of postbuckling behaviours. It is presented quantitatively on the temperature-load-deflection behaviour records how the shape recovery force affects the thermal buckling. The cross tangential method is suggested to calculate the critical buckling temperature on the temperature-deflection plot. Based on the experimental analysis, the new formula is also proposed to describe the critical buckling temperature of a laminated composite beam with embedded SMA wire actuators.

  • PDF

A Study of Vibration Characteristics of Cylindrical Composite Shells Manufactured in Present Laboratory (간이 성형장치에 의해 제작된 복합재 원통셸의 진동특성평가)

  • 한병기;유택인;이성희;이재원
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.37-46
    • /
    • 1999
  • In this study, the vibration analysis and modal tests of cylindrical composite shells which are manufactured with various stacking sequences in present laboratory were conducted under the free-free and clamped-clamped boundary conditions. Natural frequencies and mode shapes of these specimens were experimentally obtained and their results are compared with theoretical and FEM results. Both results are in good agreement, which confirm the usefulness of proposed manufacturing method for cylindrical composite shells.

  • PDF

Application of High-precision Accelerometer Made in Korea to Health Monitoring of Civil Infrastructures (국산 고정밀 가속도계의 건설 구조물 적용성 평가)

  • Kwon, Nam-Yeol;Kang, Doo-Young;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.277-283
    • /
    • 2016
  • A high-precision force-feedback 3-axes accelerometer developed in Korea has been investigated and studied for the verification of feasibility in the computational analysis and health monitoring of civil infrastructures. Through a series of experiment, the nonlinearity, bandwidth, low-frequency signal measurement accuracy and bias characteristics of the accelerometer has been thoroughly compared to those of two accelerometers produced by two market leaders in domestic and global accelerometer market. The experiment results shows that the overall measurement performance of the accelerometer has superiority over the performance of the two accelerometers from global market leader companies. Especially, the accelerometer shows a better low-frequency signal measurement accuracy and constant bias characteristic, which are mostly required in the computational analysis and the long-term health monitoring of large-scale civil infrastructures.

Deflection Prediction of Piezo-composite Unimorph Actuator Considering Material Property Change of Piezoelectric Single Crystal for Compression Stress Variation (압축 응력 변화에 대한 압전 단결정의 물성 변화를 고려한 압전 복합재료 작동기의 작동 변위 예측)

  • Yoon, Bum-Soo;Park, Ji-Won;Yoon, Kwang-Joon;Choi, Hyun-Young
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • In this study, LIPCA-S2 actuator with a piezoelectric single crystal layer and a carbon/epoxy layer was designed and evaluated to increase actuation performance of piezo-composite unimorph actuator. A curvature change model generated by the induced strain of a piezoelectric layer was used to predict the tip displacement of the piezo-composite unimorph cantilever. However, we found that there was big difference between the predicted and the measured tip displacement of LIPCA-S2 cantilever actuator when we used the previous linear prediction model. A new prediction model considering the change of piezoelectric strain coefficient and elastic modulus for the compression stress variation of the PMN-29PT single crystal layer was used and it was found that the difference between the predicted and the measured tip displacement reduced considerably.

Design and Verification of Shear Buckling Test Fixture for Composite Laminate (복합재 적층판의 전단좌굴시험을 위한 치구 설계 및 검증)

  • Park, Sung-Jun;Ko, Myung-Gyun;Kim, Dong-Gwan;Kim, Sang-Kuk;Moon, Chang-Oh;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.158-167
    • /
    • 2014
  • Final goal of this research is to establish the database for correlation factors which connects the test and analysis results of shear buckling allowables for composite plate. To accomplish the goal, extensive test and analysis works are required. In this paper, as the first step, a frame-type fixture for shear buckling test was designed and validated through the test and analysis. Final configuration of the fixture were determined via parametric study on the effect of specimen size, cross-sectional dimensions, and number of fastening bolts on the shear buckling load. Results of the study showed the designed frame-type fixture successfully induces the shear buckling of composite plate. However, there were deviations between the test results and analysis results for ideal case under pure shear load, which were mainly caused by the difference in plate sizes for both cases. The difference were larger in the plates with larger hole and simply supported boundary condition. It is concluded from the results that while the designed fixture can be used for the clamped plates with acceptable accuracy, it shows larger difference in the simply supported plates.