• Title/Summary/Keyword: 고정익

Search Result 191, Processing Time 0.028 seconds

The Analysis and Development of Electron Beam Filament (전자빔 필라멘트의 해석 및 개발)

  • Lee, Jeong-Ick;Lee, Eung-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.43-45
    • /
    • 2008
  • 박막 제작공정은 반도체 제작 공정, 고정밀도의 하드디스크 및 레이저 디스크 기술, LCD/P에 DML평판 디스크 플레이어 제작 공정에 있어 중요한 기술이다. 더욱이, 이 공정은 이동 전화 커버의 증착 및 전자 차폐의 일반기술, 램프의 반사판, 화장품 용기, 몇몇 상품에 있어 카메라 렌즈의 광학 표면 코팅과 코팅 필름 제작에 사용된다. 본 연구의 주요목적은 반도체 제작 공정과 많은 산업 분야에서 기본 재료로 사용되는 전영저항의 개발에 있다. 개발 공정은 다음과 같다. 전자빔이 최상의 진공 분위기에서 텅스텐 필라멘트의 열에 의해 방출된다. 그때 전자는 높은 전압에서 가속화된다. 전자들은 반대 재료에 충돌되고, 반대편 재료는 발생 열에 의해 코팅된다. 1차년도 연구목적은 고성능 전열 저항체 개발을 위한 지름 당 필라멘트 선의 기계적 특성을 조사하고 CAE 해석을 수행하며, 2차 년도에는 대량 생산 라인 구축을 위한 자동검사 라인 개발에 초점이 맞추어져 있다. 만일, 본 연구를 통해 전열 저항체가 개발된다면, 그 제품은 고효율, 외국제품 대비 가격 경쟁력을 가지므로 제품 경쟁력을 가질 수 있을 것으로 생각된다.

  • PDF

Validation Study on Conceptual Design and Performance Analysis for Helicopter using NDARC (NDARC을 이용한 헬리콥터 개념설계 및 성능해석 검증 연구)

  • Go, Jeong-In;Park, Jae-Sang;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.877-886
    • /
    • 2016
  • A validation study is conducted for the conceptual design and performance analysis of UH-60A Black Hawk in order to establish the conceptual design and performance analysis techniques for conventional helicopters using a single main rotor and a tail rotor. As a tool for conceptual design and analysis, NDARC(NASA Design and Analysis of Rotorcraft) is used for the present study. The conceptual design for UH-60A is successfully validated as compared with the target values. Then, various performance analyses in hover and forward flight are conducted for the UH-60A model obtained from the present design work, and they are compared well with the wind tunnel test, flight test, and previous analyses using various analysis tools. Through this validation work, the conceptual design and performance analysis techniques for the conventional helicopter are appropriately established.

Change Monitoring in Ecological Restoration Area of Open-Pit Mine Using Drone Photogrammetry (드론사진측량을 이용한 노천광산 생태복원지역의 변화 모니터링)

  • Lee, Dong Gook;Yu, Young Geol;Ru, Ji Ho;Lee, Hyun Jik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.97-104
    • /
    • 2016
  • In this study, analyze and monitor the change of the ecological restoration area inside the open-pit mine in Gangwon-do. and to analyze and monitor the change of ecological restoration area. analyzed the distribution of vegetation using high-resolution orthophoto of various periods and analyzed terrain change using DSM/DEM in study area. Therefore, orthophoto and 포인트 클라우드 were collected from 2014 aerial laser surveying and 2015 fixed-wing drone photogrammetry. In addition, orhtophoto and 포인트 클라우드 were produced by using rotary-wing drone photogrammety in 2016, and change of ecological restoration area was analyzed using this. As a result, it's possible to perform change monitoring of the open-pit mine ecological restoration area. using nEGI and VARI, about 10-30% of the area ratio of the result of extracting vegetation distribution area is distributed, and the comparison DSM and DEM cross section and restoration plan line, the cross section made by using the drone were similar, and the earth-volume analysis was possible.

Investigating Applicability of Unmanned Aerial Vehicle to the Tidal Flat Zone (조간대 갯벌에서 무인항공기 활용 가능성에 관한 연구 - 수치표고모델을 중심으로 -)

  • Kim, Bum-Jun;Lee, Yoon-Kyung;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.461-471
    • /
    • 2015
  • In this study, we generated orthoimages and Digital Elevation Model (DEM) from Unmanned Aerial Vehicle (UAV) to confirm the accuracy of possibility of geospatial information system generation, then compared the DEM with the topographic height values measured from Real Time Kinematic-GPS (RTK-GPS). The DEMs were generated from aerial triangulation method using fixed-wing UAV and rotary-wing UAV, and DEM based on the waterline method also generated. For the accurate generation of mosaic images and DEM, the distorted images occurred by interior and exterior orientation were corrected using camera calibration. In addition, we set up the 30 Ground Control Points (GPCs) in order to correct of the UAVs position error. Therefore, the mosaic images and DEM were obtained with geometric error less than 30 cm. The height of generated DEMs by UAVs were compared with the levelled elevation by RTK-GPS. The value of R-square is closely 1. From this study, we could confirm that accurate DEM of the tidal flat can be generated using UAVs and these detailed spatial information about tidal flat will be widely used for tidal flat management.

Improvement of Ortho Image Quality by Unmanned Aerial Vehicle (UAV에 의한 정사영상의 품질 개선 방안)

  • Um, Dae-Yong;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.568-573
    • /
    • 2018
  • UAV(Unmanned Aerial Vehicle) is widely used in space information construction, agriculture, fisheries, weather observation, communication, and entertainment fields because they are cheaper and easier to operate than manned aircraft. In particular, UAV have attracted much attention due to the speed and cost of data acquisition in the field of spatial information construction. However, ortho image images produced using UAVs are distorted in buildings and forests. It is necessary to solve these problems in order to utilize the geospatial information field. In this study, fixed wing, rotary wing, vertical take off and landing type UAV were used to detect distortions of ortho image of UAV under various conditions, and various object areas such as construction site, urban area, and forest area were captured and analysed. Through the research, it was found that the redundancy of the unmanned aerial vehicle image is the biggest factor of the distortion phenomenon, and the higher the flight altitude, the less the distortion phenomenon. We also proposed a method to reduce distortion of orthoimage by lowering the resolution of original image using DTM (Digital Terrain Model) to improve distortion. Future high-quality unmanned aerial vehicles without distortions will contribute greatly to the application of UAV in the field of precision surveying.

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

Verification of Entertainment Utilization of UAS FC Data Using Machine Learning (머신러닝 기법을 이용한 무인항공기의 FC 데이터의 엔터테인먼트 드론 활용 검증)

  • Lee, Jae-Yong;Lee, Kwang-Jae
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.349-357
    • /
    • 2021
  • Recently, drones are rapidly becoming common and expanding. There is a great need for diversity in whether drone flight data can be used as entertainment technology analysis data. In particular, it is necessary to check whether it is possible to analyze and utilize the flight and operation process of entertainment drones, which are developing through autonomous and intelligent methods, through data analysis and machine learning. In this paper, it was confirmed whether it can be used as a machine learning technology by using FC data in the evaluation of drones for entertainment. As a result, FC data from DJI and Parrot such as Mavic2 and Anafi were unable to analyze machine learning for entertainment. It is because data is collected at intervals of 0.1 second or more, so that it is impossible to find correlation with other data with GCS. On the other hand, it was found that machine learning technologies can be applied in the case of Fixhawk, which used an ARM processor and operates with the Nuttx OS. In the future, it is necessary to develop technologies capable of analyzing the characteristics of entertainment by dividing fixed-wing and rotary-wing flight information. For this, a model shoud be developed, and systematic big data collection and research should be conducted.

Analysis of Cable Protection of Duct in Lightning and HIRF Environment of UAM Aircraft and a Proposal for Certification Guidance (UAM 항공기 낙뢰 및 HIRF 환경에서 덕트의 케이블 보호 성능 분석 및 인증기술에 관한 연구)

  • Kim, Dong-Hyeon;Jo, Jae-Hyeon;Kim, Yun-Gon;Lee, Hakjin;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.23-34
    • /
    • 2022
  • Cities around the world are increasing their demand for Urban Air Mobility (UAM) aircraft due to traffic congestion with population concentration. Aircraft with various shapes depending on fixed-wing and propulsion systems, are being prepared for commercialization. Airworthiness certification is required as it is a manned transportation vehicle that flies in the city center and transports people on board. UAM aircraft are vulnerable to lightning and HIRF environments due to the increasing use of composite materials, the use of electric motors, and use of electronic equipment. Currently, the development of certification technology, guidelines, and requirements in lightning and HIRF environments for UAM aircraft is incomplete. In this study, the certification procedures for lightning and HIRF indirect impacts of rotorcraft shown in AC 20-136B and AC 20-158A issued by the Federal Aviation Administration (FAA), were verified and applied to the computerized simulation of UAM aircraft. The impact of lightning and HIRF on ducted fan UAM aircraft was analyzed through computerized simulation, and the basis for establishing practical guidelines for certification of UAM aircraft to be operated in the future is presented.

Development Plan for the Consequence Management in Response to Large-Scale Wildfire Disasters Using Air Force Transport Aircraft (C-130) (공군 수송기(C-130)를 활용한 대형산불 재난 대응 시 사후관리(CM) 발전방안)

  • Sangduk Kim;Minki Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.232-243
    • /
    • 2024
  • Purpose: Recently, large-scale forest fires caused by climate change, natural disasters, and human factors have been increasing every year in the East Coast and Taebaek Mountains region. Although forest fire extinguishing using helicopters is currently increasing, the need to introduce air force transport aircraft has continued to be raised due to the importance of early fire extinguishment to respond to large forest fires and the difficulty of extinguishing forest fires between sheep. This study seeks to present a plan for developing a post-fire management system for several aspects - achieving operational objectives, overcoming the operating environment, selecting a staging area, and efficient operation measures - to efficiently perform forest fire extinguishing missions using Air Force transport aircraft. Method: Based on literature research on forest fire extinguishing, forest fire extinguishing experiments using fixed-wing aircraft, and the operation status and operation method of forest fire extinguishing helicopters, the pros and cons of helicopter operation and the effects of large forest fire extinguishing using a large transport aircraft (C-130) Analyze the effectiveness of operation through analysis. Results: When extinguishing a large forest fire, an effective CM (Consequence Management) application plan was derived, including effective operation, control, command system, dispatch request, and forest fire extinguishment when integrating helicopter and fixed-wing aircraft (C-130). Conclusion: The application of the concept of CM (Consequence Management) is partially applied to some areas of chemical, biological, and radiological (CBRNE) protection in Korea, but efficient operation, control, and command systems are established when integrated operation of helicopters and large aircraft (C-130) in forest fire extinguishment. the concept of CM (Consequence Management), which is operated in advanced countries, was applied for safety management, dispatch requests, and forest fire extinguishing, thereby contributing to the establishment of a more advanced disaster and post-disaster management system.

Test of Fault Detection to Solar-Light Module Using UAV Based Thermal Infrared Camera (UAV 기반 열적외선 카메라를 이용한 태양광 모듈 고장진단 실험)

  • LEE, Geun-Sang;LEE, Jong-Jo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.106-117
    • /
    • 2016
  • Recently, solar power plants have spread widely as part of the transition to greater environmental protection and renewable energy. Therefore, regular solar plant inspection is necessary to efficiently manage solar-light modules. This study implemented a test that can detect solar-light module faults using an UAV based thermal infrared camera and GIS spatial analysis. First, images were taken using fixed UAV and an RGB camera, then orthomosaic images were created using Pix4D SW. We constructed solar-light module layers from the orthomosaic images and inputted the module layer code. Rubber covers were installed in the solar-light module to detect solar-light module faults. The mean temperature of each solar-light module can be calculated using the Zonalmean function based on temperature information from the UAV thermal camera and solar-light module layer. Finally, locations of solar-light modules of more than $37^{\circ}C$ and those with rubber covers can be extracted automatically using GIS spatial analysis and analyzed specifically using the solar-light module's identifying code.