• Title/Summary/Keyword: 고정용 CT

Search Result 51, Processing Time 0.031 seconds

Evaluation of the Efficiency of Use of Fixation Instruments in Computed Tomography-Guided Biopsy of Lung Lesions (전산화단층촬영 유도하 폐 병소의 생검시 고정기구 사용의 효용성 평가)

  • Kim, Dae-Guen;Lee, Joo-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.676-683
    • /
    • 2022
  • Minimizing patient movement during CT-guided lung biopsy is an important factor in the procedure. To minimize movement, a vacuum cushion was used to evaluate its effectiveness. The subjects of this study were 116 patients aged 40 years or older who had good coordination with postural fixation and breathing control. Posture measurements were performed in the supine position, prone position, oblique position, and lateral position according to each position of the lung lesion biopsy lesion. Measurement positions were measured in the anterior, posterior, right, and left positions based on the anatomical posture. In the prone position, the mean difference between the non-use and the use of the posterior was 1.7905, and t=2.913 (p<0.01), and the mean difference between the non-use/use was statistically significant. The difference between the unused and used averages of left was 2.4105, and the difference between the left averages was also significant with t=3.684 (p<0.01). The difference between the unused and used averages of the right was 2.3263, with t=3.791 (p<0.01). The mean difference between unused and used is statistically significant. As a result of statistical analysis, the biopsy of the lung lesion using a fixation device showed less movement in all postures. It is considered that it is meaningful in that it is possible to conduct a more accurate biopsy procedure and minimize the patient's posture movement by using a fixation device during the CT-guided biopsy of the lung lesion.

A Study of Thermoplastic Masks Deformation for Reducing Scattered Ray in Radiation Therapy (방사선치료용 열가소성 플라스틱 마스크의 산란선 감소를 위한 마스크 변형에 관한 연구)

  • Seong-Min, Lee;Jun-Young, Lee;Jae-Hyun, Kim;Kyeong-Hwan, Jeong;Jeong-Min, Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • In head and neck radiation therapy, the thermoplastic immobilization mask used for fixing the patient's posture and reproducibility causes scattered rays by being in close contact with the skin. To investigate the increase in skin dose due to the scattered rays generated from the immobilization mask, we evaluated dose reduction by decreasing contact between face skin and immobilization mask in computerized radiotherapy planning system with CT scanned images. In addition, to confirm the reproducibility problem of the setup due to the decrease in the cover area of immobilizing, the difference of each setup was confirmed using DRR and CT images. As the mask area covered for immobilizing was reduced, the dose on the skin surface significantly decreased, and it was confirmed that there was no significant difference in reproducibility even if the entire face was not covered and fixed.

Full mouth rehabilitation of a patient using monolithic zirconia and dental CAD/CAM system: a case report (단일구조 수복용 지르코니아와 Dental CAD/CAM System을 이용한 전악 임플란트 고정성 보철 수복 증례)

  • Lee, Sang-Hoon;Yoon, Hyung-In;Yeo, In-Sung;Han, Jung-Suk;Kim, Sung-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.3
    • /
    • pp.196-207
    • /
    • 2018
  • An accurate implant placement with ideal location is significant for long-term success of the implant. An exact evaluation of nearby anatomic structures such as quality of residual bone, an inferior alveolar bone and a maxillary sinus is required. For a prosthetic-driven treatment, planned surgery, precise prosthesis and communication with the patient are significant requisites especially for full-mouth rehabilitation. In this case, the patient with severe alveolar bone resorption had a CT guided surgery supported by CT data and the data from scanning diagnostic wax-up. Afterward, edentulous area was restored by full mouth implant-supported prosthesis by using monolithic zirconia and CAD/CAM technique. This paper reports the outcome of the procedure which was remarkable both esthetically and functionally.

A Study on the Indirect Radiation Exposure of the Medical Personnel Who is Responsible for Patient Safety in CT Examination (전산화단층촬영검사 시 검사실 내에 위치할 수 있는 의료인의 간접 피폭선량에 대한 연구)

  • Choi, Min-Hyeok;Jang, Ji-Sung;Lee, Ki-Baek
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.105-111
    • /
    • 2019
  • A medical personnel could be placed beside a patient together in CT room to do Ambu-bag for a seriously ill patients or emergency patient. At this time, the medical personnel can be exposed indirect radiation unnecessarily. In this case, it is necessary to recognize indirect radiation dose levels and methods to reduce them using actual clinical CT protocols such as Chest, Abdomen, and Brain CT. We researched surface radiation dose with or without radiation protectors such as apron and goggles according to different distances far from gantry using two different CT scanners (Fixed MDCT and mobile CT). As a result, for Chest, Abdomen, and Brain CT with Fixed MDCT, indirect radiation dose on thorax portion were 0.047, 0.089, 0.034 mSv without apron. Also, those with apron were 0.007, 0.012, 0.006 mSv. In case of mobile CT, it was 0.014 mSv without apron and 0.005 mSv with apron. By using protectors and increasing the distance, we could reduce it to 97%. Systematic management is necessary based on the measured data in order to minimize radiation damage due to indirect exposure dose.

Clinical Implementation of an Eye Fixing and Monitoring System with Head Mount Display (Head Mount Display (HMD)를 이용한 안구의 고정 및 감시장치의 임상사용 가능성 확인)

  • Ko, Young-Eun;Park, Seoung-HO;Yi, Byong-Yong;Ahn, Seung-Do;Lim, Sang-Wook;Lee, Sang-Wook;Shin, Seong-Soo;Kim, Jong-Hoon;Choi, Eun-Kyung;Noh, Young-Ju
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • A system to non-invasively fix and monitor eye by a head mounted display (HMD) with a CCD camera for stereotactic radiotherapy (SRS) of uveal melanoma has been developed and implemented clinically. The eye fixing and monitoring system consists of a HMD showing patient a screen for fixing eyeball, a CCD camera monitoring patient's eyeball, and an immobilization mask. At flrst, patient's head was immobilized with a mask. Then, patient was Instructed to wear HMD, to which CCD camera was attached, on the mask and see the given reference point on its screen. While patient stared at the given point in order to fix eyeball, the camera monitored Its motion. Four volunteers and one patient of uveal melanoma for SRS came into this study. For the volunteers, setup errors and the motion of eyeball were analyzed. For the patient, CT scans were peformed, with patient's wearing HMD and fixing the eye to the given point. To treat patient under the same condition, daily CT scans were also peformed before every treatment and the motion of lens was compared to the planning CT Setup errors for four volunteers were within 1mm and the motion of eyeball was fixed within the clinically acceptable ranges. For the patient with uveal melanoma, the motion of lens was fixed within 2mm from daily CT scans. An eye fixing and monitoring system allowed Immobilizing patient as well as monitoring eyeball and was successfully implemented in the treatment of uveal melanoma for SRS.

  • PDF

The evaluation of usefulness of the newly manufactured immobilization device (치료보조기구의 제작 및 유용성 평가)

  • Seo Seok Jin;Kim Chan Yoeng;Lee Je Hee;Park Heung Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • Purpose : To evaluate the usefulness of the handmade patient immobilization device and to report the clinical results of it. Materials and methods : We made two fusion images and analyzed those images. One image is made with diagnostic MR image and CT image, the other with therapeutic planning MR image and CT image. With open head holder, we measured the skin dose and attenuation dose. Also, we made the planning CT couch plate with acrylic plate and styrofoam and compared artifact. Results : We could get more accurate fusion image when we use MR head holder(within 2mm error). The skin dose was reduced 2 times and the attenuation dose was reduced more than $20\%$ when open head holder used. The planning CT couch plate was more convenient than conventional board and reduced artifact remarkably. Conclusion : We could verify the localization point in the MR image which is taken with MR head holder. So we could fuse the image more accurately. The same method could be applied to PET and US image, if the alike immobilization device used. With open head holder, the skin dose and the attenuation dose was reduced. And those above devices could substitute for expensive foreign device, if those are manufactured adequately.

  • PDF

Impact of the Planning CT Scan Time on the Reflection of the Lung Tumor Motion (전산화단층촬영 주사시간(Scan Time)이 폐종양운동의 재현성에 미치는 영향 분석)

  • Kim Su Ssan;Ha Sung Whan;Choi Eun Kyung;Yi Byong Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2004
  • Purpose : To evaluate the reflection of tumor motion according to the planning CT scan time. Material and Methods : A model of N-shape, which moved aiong the longitudinal axis during the ventilation caused by a mechanical ventilator, was produced. The model was scanned by planning CT, while setting the relative CT scan time (T: CT scan time/ventilatory period) to 0.33, 0.50, 0.67, 0.75, 1.00, 1.337, and 1.537. In addition, three patients with non-small cell lung cancer who received stereotactic radiosurgery In the Department of Radiation Oncology, Asan Medical Center from 03/19/2002 to 05/21/2002 were scanned. Slow (10 Premier, Picker, scan time 2.0 seconds per slice) and fast CT scans (Lightspeed, GE Medical Systems, with a scan time of 0.8 second per slice) were peformed for each patient. The magnitude of reflected movement of the N-shaped model was evaluated by measuring the transverse length, which reflected the movement of the declined bar of the model at each slice. For patients' scans, all CT data sets were registered using a stereotactic body frame scale with the gross tumor volumes delineated in one CT image set. The volume and three-dimensional diameter of the gross tumor volume were measured and analyzed between the slow and fast CT scans. Results : The reflection degree of longitudinal movement of the model increased in proportion to the relative CT scan times below 1.00 7, but remained constant above 1.00 T Assuming the mean value of scanned transverse lengths with CT scan time 1.00 T to be $100\%$, CT scans with scan times of 0.33, 0.50, 0.57, and 0.75 T missed the tumor motion by 30, 27, 20, and $7.0\%$ respectively, Slow (scan time 2.0 sec) and Fast (scan time 0.8 sec) CT scans of three patients with longitudinal movement of 3, 5, and 10 mm measured by fluoroscopy revealed the increases in the diameter along the longitudinal axis Increased by 6.3, 17, and $23\%$ in the slow CT scans. Conculsion : As the relative CT scan time increased, the reflection of the respiratory tumor movement on planning CT also Increased, but remained constant with relative CT scan times above 1.00 T When setting the planning CT scan time above one respiration period (>1.00 T), only the set-up margin is needed to delineate the planning target volume. Therefore, therapeutic ratio can be increased by reducing the radiation dose delivered to normal lung tissue.

Breeding of Resistant Cabbage 'CT-171' to Fusarium Wilt (시들음병 저항성 양배추 품종 'CT-171' 육성)

  • Song, Jun-Ho;Kim, Gi-Jun;Kim, Kyoung-Cheol;Han, Tae-Ho
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.129-132
    • /
    • 2014
  • A new resistant cabbage variety 'CT-171' to Fusarium wilt was bred by crossing $A337MSBC_5$ with resistance to the disease and 397-$G_6$ with good density and color. 'CT-171' was selected after combining ability, seed gathering and regional adaptability test in 2008. For breeding of resistant varieties, we investigated the development of Fusarium wilt on cabbage seedlings inoculated with Fusariumoxysporum f. sp. conglutinans by root dipping inoculation method. As a result, 'CT-171' showed higher resistance to Fusarium wilt than 'Asiaball' used as control. The maturity of new variety was 58 days and was faster than control and well suited for autumn cultivation because of cold resistance. The anthocyanin pigment of plant was not revealed. The weight, height and width of head were 1.5 kg, 14 cm and 15 cm, respectively and the core size was 5.7 cm and stable in various cultivation environments. 'CT-171' which showed good agricultural character and resistance to Fusarium wilt filed for variety protect right in Korea Seed & Variety Service on February 2013. The new variety will be appropriate for export and domestic consumption.

USABILITY EVALUATION OF PLANNING MRI ACQUISITION WHEN CT/MRI FUSION OF COMPUTERIZED TREATMENT PLAN (전산화 치료계획의 CT/MRI 영상 융합 시 PLANNING MRI영상 획득의 유용성 평가)

  • Park, Do-Geun;Choe, Byeong-Gi;Kim, Jin-Man;Lee, Dong-Hun;Song, Gi-Won;Park, Yeong-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2014
  • Purpose : By taking advantage of each imaging modality, the use of fused CT/MRI image has increased in prostate cancer radiation therapy. However, fusion uncertainty may cause partial target miss or normal organ overdose. In order to complement such limitation, our hospital acquired MRI image (Planning MRI) by setting up patients with the same fixing tool and posture as CT simulation. This study aims to evaluate the usefulness of the Planning MRI through comparing and analyzing the diagnostic MRI image and Planning MRI image. Materials and Methods : This study targeted 10 patients who had been diagnosed with prostate cancer and prescribed nonhormone and definitive RT 70 Gy/28 fx from August 2011 to July 2013. Each patient had both CT and MRI simulations. The MRI images were acquired within one half hour after the CT simulation. The acquired CT/MRI images were fused primarily based on bony structure matching. This study measured the volume of prostate in the images of Planning MRI and diagnostic MRI. The diameters at the craniocaudal, anteroposterior and left-to-right directions from the center of prostate were measured in order to compare changes in the shape of prostate. Results : As a result of comparing the volume of prostate in the images of Planning MRI and diagnostic MRI, they were found to be $25.01cm^3$(range $15.84-34.75cm^3$) and $25.05cm^3$(range $15.28-35.88cm^3$) on average respectively. The diagnostic MRI had an increase of 0.12 % as compared with the Planning MRI. On the planning MRI, there was an increase in the volume by $7.46cm^3$(29 %) at the transition zone directions, and there was a decrease in the volume by $8.52cm^3$(34 %) in the peripheral zone direction. As a result of measuring the diameters at the craniocaudal, anteroposterior and left-to-right directions in the prostate, the Planning MRI was found to have on average 3.82cm, 2.38cm and 4.59cm respectively and the diagnostic MRI was found to have on average 3.37cm, 2.76cm and 4.51cm respectively. All three prostate diameters changed and the change was significant in the Planning MRI. On average, the anteroposterior prostate diameter decrease by 0.38cm(13 %). The mean right-to-left and craniocaudal diameter increased by 0.08cm(1.6 %) and 0.45cm(13 %), respectively. Conclusion : Based on the results of this study, it was found that the total volumes of prostate in the Planning MRI and the diagnostic MRI were not significantly different. However, there was a change in the shape and partial volume of prostate due to the insertion of prostate balloon tube to the rectum. Thus, if the Planning MRI images were used when conducting the fusion of CT/MRI images, it would be possible to include the target in the CTV without a loss as much as the increased volume in the transition zone. Also, it would be possible to reduce the radiation dose delivered to the rectum through separating more clearly the reduction of peripheral zone volume. Therefore, the author of this study believes that acquisition of Planning MRI image should be made to ensure target delineation and localization accuracy.

Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients (유방암 환자의 모의치료, CT 스캔 및 치료 과정에서 발생되는 준비 오차 분석)

  • Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.169-175
    • /
    • 2005
  • Purpose: Although computed tomography (CT) simulators are commonly used in radiation therapy department, many Institution still use conventional CT for treatments. In this study the setup errors that occur during simulation, CT scan (diagnostic CT scanner), and treatment were evaluated for the twenty one breast cancer patients. Materials and Methods: Errors were determined by calculating the differences in isocenter location, SSD, CLD, and locations of surgical clips implanted during surgery. The anatomic structures on simulation film and DRR image were compared to determine the movement of isocenter between simulation and CT scan. The isocetner point determined from the radio-opaque wires placed on patient's surface during CT scan was moved to new position if there was anatomic mismatch between the two images Results: In 7/21 patients, anatomic structures on DRR Image were different from the simulation Image thus new isocenter points were placed for treatment planning. The standard deviations of the diagnostic CT setup errors relative to the simulator setup in lateral, longitudinal, and anterior-posterior directions were 2.3, 1.6, and 1.6 mm, respectively. The average variation and standard deviation of SSD from AP field were 1.9 mm and 2.3 mm and from tangential fields were 2.8 mm and 3.7 mm. The variation of the CLD for the 21 patients ranged from 0 to 6 mm between simulation and DRR and 0 to 5 mm between simulation and treatment. The group systematic errors analyzed based on clip locations were 1.7 mm in lateral direction, 2.1 mm in AP direction, and 1.7 mm in SI direction. Conclusion: These results represent that there was no significant differences when SSD, CLD, clips' locations and isocenter locations were considered. Therefore, it is concluded that when a diagnostic CT scanner is used to acquire an image, the set-up variation is acceptable compared to using CT simulator for the treatment of breast cancer. However, the patient has to be positioned with care during CT scan in order to reduce the setup error between simulation and CT scan.