• Title/Summary/Keyword: 고장-안전 설계 요구사항

Search Result 12, Processing Time 0.027 seconds

Proposal of a Fail-Safe Requirement Analysis Procedure to Identify Critical Common Causes an Aircraft System (항공기 시스템의 치명적인 공통 요인을 식별하기 위한 고장-안전 요구분석 절차 제안)

  • Lim, San-Ha;Lee, Seon-ah;Jun, Yong-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.259-267
    • /
    • 2022
  • The existing method of deriving the fail-safe design requirements for the domestic developed rotary-wing aircraft system may miss the factors that cause critical system function failures, when being applied to the latest integrated avionics system. It is because the existing method analyzes the severity effect of the failures caused by a single item. To solve the issue, we present a systematic analysis procedure for deriving fail-safe design requirements of system architecture by utilizing functional hazard assessment and development assurance level analysis of SAE ARP4754A, international standard for complex system development. To demonstrate that our proposed procedure can be a solution for the aforementioned issue, we set up experimental environments that include common factors that can cause critical function failures of a system, and we conducted a cross-validation with the existing method. As a result, we showed that the proposed procedure can identify the potential critical common factors that the existing method have missed, and that the proposed procedure can derive fail-safe design requirements to control the common factors.

Detection of Functional Failure and Verification of Safety Requirements Using Meta-Models in the Model-Based Design of Safety-Critical Systems (안전중시 시스템의 모델기반 설계에서 메타모델을 활용한 기능 고장의 탐지 및 안전 요구사항 검증)

  • Kim, Young-Hyun;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.308-313
    • /
    • 2016
  • Modern systems have become more and more complex due to the ever-increasing user requirements and rapid advance of technology. As such, the frequency of accidents due to system design errors or failure has been increasing. When the damage incurred by accidents to human beings or property is serious, the underlying systems are referred to as safety-critical systems. The development of such systems requires special efforts to ensure the safety of the human beings operating them. To cope with such a requirement, in this paper an approach is employed in which we consider safety starting from the conceptual design phase of the systems. Specifically, a systems design method that can detect functional failure is proposed by utilizing meta-models and M&S methods. To accomplish this, the safety design data from international safety standards are first extracted and also a meta-model is generated using SysML (systems modeling language). Then, a SysML-based system design method is proposed based on the use of the developed meta-model. We also discuss how the safety requirements can be created and verified using a simulation method. Finally, through a case study in automotive design, it is demonstrated that the detection of a functional failure and the verification of a safety requirement can be accomplished using the SysML-based M&S method. This study indicates that the use of meta-models can be useful for collecting and managing safety data and that the meta-model based M&S method can make it possible to satisfy the system requirements by reducing the design errors.

An Improved SysML-Based Failure Model for Safety Verification By Simulation (시뮬레이션을 통해 안전성 검증을 위한 개선된 SysML 기반 고장 모델)

  • Kim, Chang-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.410-417
    • /
    • 2018
  • System design errors are more likely to occur in modern systems because of their steadily increasing size and complexity. Failures due to system design errors can cause safety-related accidents in the system, resulting in extensive damage to people and property. Therefore, international standards organizations, such as the U.S. Department of Defense and the International Electrotechnical Commission, have established international safety standards to ensure system safety, and recommend that system design and safety activities should be integrated. Recently, the safety of a system has been verified by modeling through a model-based system design. On the other hand, system design and safety activities have not been integrated because the model for system design and the failure model for safety analysis and verification were developed using different modeling language platforms. Furthermore, studies using UML or SysML-based failure models for deriving safety requirements have shown that these models have limited applicability to safety analysis and verification. To solve this problem, it is essential to extend the existing methods for failure model implementation. First, an improved SysML-based failure model capable of integrating system design and safety verification activities should be produced. Next, this model should help verify whether the safety requirements derived via the failure model are reflected properly in the system design. Therefore, this paper presents the concept and method of developing a SysML-based failure model for an automotive system. In addition, the failure model was simulated to verify the safety of the automotive system. The results show that the improved SysML-based failure model can support the integration of system design and safety verification activities.

The Reasonable SIL Determination by LOPA for HIPS Design of Flare Stack (LOPA분석에 의한 Flare Stack용 HIPS의 합리적 SIL결정)

  • Park, Jinhyung;Park, Kyoshik
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.221-221
    • /
    • 2023
  • 1969년에 발간된 API521 1st edition에서는 Flare Load 저감용으로 적용되는 HIPS (High Integrity Protection System)는 모두 Pressure Safety Valve의 고장확률보다 낮은 SIL 3 (Safety Integrity Level)등급을 적용할 것을 요구하고 있다. Flare Stack 저감용 HIPS는 주로 압축기 출력압력상승, Reboiler Steam 과다주입, 전력공급중단냉각펌프고장 등에 의한 Flare 발생을 예방하기 위한 기능을 가진 SIF (Safety Instrumented Function)로 구성된다. 하지만 2007년도 발간된 API521 5th edition에서는 LOPA (Layer Of Protection Analysis) 분석을 통해 Target SIL을 도출하는 것으로 요구사항을 변경했다. 이에 따라 이번 연구에서는 Flare Load에 가장 큰 영향을 미치는 시나리오 중 대표적인 시나리오를 대상으로 HAZOP(Hazard and Operability Study)과 LOPA분석을 실시해서 Target SIL이 어떻게 도출되는지를 연구했다. Flare Stack에서 Flare를 발생시키는 대표적인 시나리오들에 대해 LOPA분석을 실시한 결과 압축기 출력압력상승은 SIL 2, Reboiler Steam 과다주입은 SIL 3, 전력공급중단은 SIL 0, 냉각펌프고장은 SIL 0로 모두가 SIL 3 가 나오지는 않았다. SIF 설계 시 Target SIL을 만족시키는 것도 중요하지만 운전 시 SIL 등급이 계속 유지되게 하지 위해 인적오류, 시스템적 고장, 하드웨어고장 등에 의해 SIF 기능불능화가 되는 것을 예방하기 위한 기능안전관리시스템 (FSMS)를 적용하는 것도 중요하다.

  • PDF

A Study on Fault History Management Equipment of Unmanned Aerial Systems (무인항공기 체계의 고장이력관리장비에 관한 연구)

  • Soh, Nahyun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.48-55
    • /
    • 2019
  • This paper presents a study on Fault History Management Equipment (FHME) of Unmanned Aerial Systems (UAS). UAS comprise of various types of electronic equipment for high reliability design for flight safety. Consequently, it is mandatory for each on-board equipment to have its own Built-In-Test (BIT) function, because rapid fault-detections for UAS are necessary. FHME is developed for the purposes of display, storage and management of such BIT results on ground. This paper describes the outline, development requirements, design and verification process of FHME.

A Study on Architecture Design of Output Module for SIL4 Safety Related System (SIL4 안전관련 시스템에 적합한 출력 모듈의 구조 설계에 대한 연구)

  • Yoo, Deung-Ryeol;Hwang, Kyeng-Hwan;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.10
    • /
    • pp.1079-1086
    • /
    • 2015
  • This paper introduces the architecture of OUTPUT module that is suitable using in safety related system having SIL4 and proposes the quantitative target that is required for OUTPUT module. Especially, only output type that is made up Relay output signal and analog signal among various output ways is applied in output module that is a part of safety related system. The FMEA(Failure Modes and Effect Analysis), FTA(Fault Tree Analysis) are used as analysis method. As a result, it proposes to the architecture and failure frequency of the Output module that is used in SIL4 safety related system.

A Study on Reliability, Safety Analysis and Related Performance Improvement of Avionics Equipment (항공전자장비 신뢰성, 안전성 분석 및 관련 성능 개선 방안 연구)

  • Seo, Joon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1220-1227
    • /
    • 2018
  • Avionics electronic equipment refers to the electronic equipment installed on an aircraft. Failure of avionics equipment can have a significant impact on aircraft operations as well as threaten the safety of pilots and passengers. Therefore, avionics electronic equipment is required to have higher reliability and safety than electronic equipment used for other purposes. Avionics equipment must consider various component selection and system design to meet reliability and safety-related requirements from the initial design stage. In this paper, we describe safety, reliability performance analysis method of avionics equipment, and introduce various design improvement methods that can be performed to meet safety requirement performance. Finally, the safety performance of the improved avionics equipment was reanalyzed and compared with the value before the improvement, the validity of the proposed design change was verified.

Conceptual Design of Safety Step System in Urban Railway Platforms (도시철도 승강장 안전발판 시스템 개념설계)

  • Park, Min-Heung;Kwak, Hee-Man;Kim, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2559-2566
    • /
    • 2014
  • Recently, safety accident by misstep at the gap between the platform and railway vehicle have frequently occurred to the mobility handicapped including disabled person, children etc. in metropolitan subway region. Particularly, because the curved platform's gap from platform to railway vehicle is max. 260mm it is important to securement of the passenger's safe mobility right. So it is necessary to platform safety step equipment for needs technology to interface gap between the platform and railway vehicle. In this study we examined the function & production requirements of platform safety step and performed the conceptual design considering the crash safety and maintenance easiness. Moreover, considering various performance requirements we suggested step's operation procedure & control flowchart.

Development of NORSOK T-100-based telecom management system for off-shore installation (NORSOK T-100 기반의 해양플랜트용 TMS 응용 소프트웨어 개발)

  • Mun, Seong-Mi;Jang, Won-Seok;Park, Su-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • Malfunctioning of telecom systems can have serious implications on the safe navigation and operation of vessels and off-shore plants. Most safety-related accidents incur significant monetary damages and pollution due to complicated arrangements of the working environments and facilities. Therefore, an automated monitoring system that can collect data from configured telecom equipment connected to a network based on IP is required to ensure safe navigation and operation of such crucial institutions. This paper reports a list of such system requirements, system functions, and user-centered requirements based on the NORSOK T-100 (a standard of telecom management system). These findings were made through research with the newly designed and developed telecom management system (TMS). The TMS was tested by a testbed configured with CCTV, PA/GA, and other network equipment.

A Software Testing Plan for Integral Reactor MMIS Design (일체형원자로 MMIS 설계에 적용을 위한 소프트웨어 시험 계획)

  • Suh, Yong-Suk;Hur, Seop;Park, Geun-Ok;Lee, Jong-Bok;Kim, Dong-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.1097-1100
    • /
    • 2001
  • 소프트웨어 개발자로부터 독립된 소프트웨어 시험자가 수행하는 소프트웨어 시험은 소프트웨어의 안전성 향상을 위해 필요하다. 컴퓨터기반의 디지틀시스템으로 설계되는 일체형원자로 MMIS에 적용하기 위한 소프트웨어 시험 계획을 개발할 필요가 있다. 본 논문은 소프트웨어 시험 계획을 소프트웨어시험 조직 구성, 시험 문서, 시험 절차, 시험 방법을 중심으로 제시한다. 소프트웨어 시험 방법은 원시코드 정적분석과 동적시험을 구분하여 기술한다. 본 논문에서 제시된 소프트웨어 시험 계획은 원자력 규제기관에서 요구하는 소프트웨어 시험 요구사항을 만족한다. 본 논문을 통해 제시된 소프트웨어 시험 계획을 일체형원자로 MMIS 소프트웨어 개발 시 적용하여 소프트웨어 고장율 데이터를 수집할 예정이다.

  • PDF