• Title/Summary/Keyword: 고장 발생률

Search Result 150, Processing Time 0.028 seconds

The Comparative Study for ENHPP Software Reliability Growth Model based on Modified Coverage Function (변형 커버리지 함수를 고려한 ENHPP 소프트웨어 신뢰성장 모형에 관한 비교 연구)

  • Kim, Hee-Cheul;Kim, Pyong-Koo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.89-96
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant. monotonic increasing or monotonic decreasing failure occurrence rates per fault. Accurate predictions of software release times. and estimation of the reliability and availability of a software product require quality of a critical element of the software testing process : test coverage. This model called Enhanced non-homogeneous Poission process(ENHPP). In this paper, exponential coverage and S-type model was reviewed, proposes modified(the superosition and mixture) model, which make out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method. model selection based on SSE statistics for the sake of efficient model, was employed.

  • PDF

The Study for ENHPP Software Reliability Growth Model based on Superposition Coverage Function (중첩커버리지 함수를 고려한 ENHPP 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.7 no.3
    • /
    • pp.7-13
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. Accurate predictions of software release times, and estimation of the reliability and availability of a software product require quantification of a critical element of the software testing process : test coverage. This model called Enhanced non-homogeneous poission process (ENHPP). In this paper, exponential coverage and S-shaped model was reviewed, proposes the superposition model, which maked out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE statistics for the sake of efficient model, was employed.

  • PDF

The Comparative Study for NHPP Software Reliability Growth Model Based on Non-linear Intensity Function (비선형 강도함수를 가진 NHPP 소프트웨어 신뢰성장 모형에 관한 비교 연구)

  • Kim, Hee-Cheul
    • Convergence Security Journal
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault (intensity function). In this paper, intensity function of Goel-Okumoto model was reviewed, proposes Kappa (2) and the Burr distribution, which maked out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method. For model determination and selection, explored goodness of fit (the error sum of squares) The methodology developed in this paper is exemplified with a software reliability real data set introduced by NTDS (Naval Tactical Data System)

  • PDF

Design of Hybrid Rocket System Using Qualitative and Semi-Quantitative Reliability Analysis (정성적 및 준-정량적 신뢰성 분석 기법을 이용한 하이브리드 로켓 설계)

  • Moon, Keun Hwan;Park, Young Hoon;Choi, Joo Ho;Kim, Jin Kon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • In this study, design of a small hybrid rocket is carried out using Failure Mode and Effects Analysis (FMEA) and Criticality Analysis(CA), which is a method for qualitative and semi-quantitative reliability analysis. In order to carry out FMEA, the structure of the hybrid rocket is divided into 31 parts and 72 potential failure modes. As a result of the FMEA, the relationship between potential failure modes, causes and effects, and their severity are evaluated qualitatively. Criticality analysis is followed for the failure modes, in which the criticality number is estimated using the failure rate information available from the handbook. Moreover, the failure modes with higher criticality and severity are chosen for improvement, and a series of design or material changes are made for the improvement of the hybrid rocket reliability.

Semiquantitative Failure Mode, Effect and Criticality Analysis for Reliability Analysis of Solid Rocket Propulsion System (고체 로켓 추진 기관의 신뢰성 분석을 위한 준-정량적 FMECA)

  • Moon, Keun Hwan;Kim, Jin Kon;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.631-638
    • /
    • 2015
  • In this study, semiquantitative failure mode, effects, and criticality analysis (FMECA) for the reliability analysis of a solid rocket propulsion system is performed. The semiquantitative FMECA is composed of failure mode and effects analysis (FMEA) and criticality analysis (CA). To perform FMECA, the structure of the solid rocket propulsion system is divided into 43 parts down to the component level, and FMEA is conducted at the design stage considering 137 potential failure modes. CA is then conducted for each failure mode, during which the criticality number is estimated using the failure rate databases. The results demonstrate the relationship between potential failure modes, causes, and effects, and their risk priorities are evaluated qualitatively. Additionally, several failure modes with higher criticality and severity values are selected for high-priority improvement.

Statistical Analysis of Operating Efficiency and Failures of a Medical Linear Accelerator for Ten Years (선형가속기의 10년간 가동률과 고장률에 관한 통계분석)

  • Ju Sang Gyu;Huh Seung Jae;Han Youngyih;Seo Jeong Min;Kim Won Kyou;Kim Tae Jong;Shin Eun Hyuk;Park Ju Young;Yeo Inhwan J.;Choi David R.;Ahn Yong Chan;Park Won;Lim Do Hoon
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.186-193
    • /
    • 2005
  • Purpose: To improve the management of a medical linear accelerator, the records of operational failures of a Varian CL2l00C over a ten year period were retrospectively analyzed. Materials and Methods: The failures were classified according to the involved functional subunits, with each class rated Into one of three levels depending on the operational conditions. The relationships between the failure rate and working ratio and between the failure rate and outside temperature were investigated. In addition, the average life time of the main part and the operating efficiency over the last 4 years were analyzed. Results: Among the recorded failures (total 587 failures), the most frequent failure was observed in the parts related with the collimation system, including the monitor chamber, which accounted for $20\%$ of all failures. With regard to the operational conditions, 2nd level of failures, which temporally interrupted treatments, were the most frequent. Third level of failures, which interrupted treatment for more than several hours, were mostly caused by the accelerating subunit. The number of failures was increased with number of treatments and operating time. The average life-times of the Klystron and Thyratron became shorter as the working ratio increased, and were 42 and $83\%$ of the expected values, respectively. The operating efficiency was maintained at $95\%$ or higher, but this value slightly decreased. There was no significant correlation between the number of failures and the outside temperature. Conclusion: The maintenance of detailed equipment problems and failures records over a long period of time can provide good knowledge of equipment function as well as the capability of predicting future failure. Wore rigorous equipment maintenance Is required for old medical linear accelerators for the advanced avoidance of serious failure and to improve the qualify of patient treatment.

The Study for NHPP Software Reliability Growth Model based on Burr Distribution (Burr 분포를 이용한 NHPP소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee-Cheul;Park, Jong-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.514-522
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this parer, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the Burr distribution reliability model, which making out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE, AIC statistics and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing shape parameter of the Burr distribution was employed. This analysis of failure data compared with the Burr distribution model and the existing model(using arithmetic and Laplace trend tests, bias tests) is presented.

Life-cycle estimation of HVDC full-bridge sub-module considering operational condition and redundancy (HVDC 풀-브리지 서브모듈의 동작 조건과 여유율을 고려한 수명예측)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1208-1217
    • /
    • 2019
  • The life-cycle prediction of the sub-module which is the unit system of MMC is very important from the viewpoint of maintenance and economic feasibility of HVDC system. However, the life-cycle prediction that considers only the type, number and combination of parts is a generalized result that does not take into account the operating condition of the sub-module, and may significantly differ from the life-cycle of the actual one. Therefore, we design a fault tree for the purpose of reflecting the operation characteristics of the full-bridge sub-module and apply the MIL-HDBK-217F to the failure rate of the basic event to predict the life-cycle of the full-bridge sub-module. It compares the life-cycle expectancy of the conventional failure rate analysis with the proposed fault-tree analysis and compares the lifetime according to whether the redundancy of the full-bridge sub-module is considered.

Fault Tolerant Processor Design for Aviation Embedded System and Verification through Fault Injection (항공용 임베디드 시스템을 위한 고장감내형 프로세서 설계와 오류주입을 통한 검증)

  • Lee, Dong-Woo;Ko, Wan-Jin;Na, Jong-Wha
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.233-238
    • /
    • 2010
  • In this paper, we applied the forward and backward error recovery techniques to a reduced instruction set computer (risc) processor to develop two fault-tolerant processors, namely, fetch redundant risc (FRR) processor and a redundancy execute risc (RER) processor. To evaluate the fault-tolerance capability of three target processors, we developed the base risc processor, FRR processor, and RER processor in SystemC hardware description language. We performed fault injection experiment using the three SystemC processor models and the SystemC-based simulation fault injection technique. From the experiments, for the 1-bit transient fault, the failure rate of the FRR, RER, and base risc processor were 1%, 2.8%, and 8.9%, respectively. For the 1-bit permanent fault, the failure rate of the FRR, RER, and base risc processor were 4.3%, 6.5%, and 41%, respectively. As a result, for 1-bit fault, we found that the FRR processor is more reliable among three processors.

Determination of Maintenance Period and Failure Probability for Turbine Using Maintenance Record (터빈설비의 정비이력을 이용한 고장확률 예측 및 정비주기 설정에의 응용)

  • Song, Gee-Wook;Koo, Jae-Raeyang;Choi, Woo-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1325-1330
    • /
    • 2010
  • The breakdown of any critical component of a turbine results in the outage of power plants. Unexpected failure decreases equipment utilization and causes enormous economic losses. Currently, we conduct conservative preventive maintenance for a maintenance period that is proposed by a vendor. In the rapidly changing business environment, reliability-based maintenance is required in order to remain competitive and reduce maintenance costs while maintaining the reliability of equipment. In order to determine an appropriate maintenance period for guaranteeing reliability, we must determine the failure probability by carefully analyzing the failure history of the equipment. In this study, we created a database of failure history for power-plant turbines, predicted the best repair time using the Weibull function, and investigated how the appropriate maintenance cycle can be determined.