DOI QR코드

DOI QR Code

Design of Hybrid Rocket System Using Qualitative and Semi-Quantitative Reliability Analysis

정성적 및 준-정량적 신뢰성 분석 기법을 이용한 하이브리드 로켓 설계

  • Moon, Keun Hwan (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Park, Young Hoon (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Choi, Joo Ho (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Kim, Jin Kon (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.)
  • 문근환 (한국항공대학교 항공우주 및 기계공학과) ;
  • 박영훈 (한국항공대학교 항공우주 및 기계공학과) ;
  • 최주호 (한국항공대학교 항공우주 및 기계공학과) ;
  • 김진곤 (한국항공대학교 항공우주 및 기계공학과)
  • Received : 2016.07.14
  • Accepted : 2016.10.03
  • Published : 2017.01.01

Abstract

In this study, design of a small hybrid rocket is carried out using Failure Mode and Effects Analysis (FMEA) and Criticality Analysis(CA), which is a method for qualitative and semi-quantitative reliability analysis. In order to carry out FMEA, the structure of the hybrid rocket is divided into 31 parts and 72 potential failure modes. As a result of the FMEA, the relationship between potential failure modes, causes and effects, and their severity are evaluated qualitatively. Criticality analysis is followed for the failure modes, in which the criticality number is estimated using the failure rate information available from the handbook. Moreover, the failure modes with higher criticality and severity are chosen for improvement, and a series of design or material changes are made for the improvement of the hybrid rocket reliability.

본 연구에서는 대표적 정성적 신뢰성 분석 기법인 FMEA(고장모드 및 영향 분석)와 준-정량적 분석 방법인 치명도 분석을 이용하여 소형 하이브리드 로켓 설계를 수행하였다. 설계 중인 하이브리드 로켓을 총 31개의 부품으로 나누고 각 부품에서 발생할 수 있는 총 72개의 고장모드를 고려하여 FMEA를 수행하였으며 고장모드의 원인과 영향을 분석하였다. 또한 고장모드들의 정성적인 심각도 평가를 수행하고, 고장모드의 고장률 데이터를 이용하여 치명도 분석을 추가적으로 수행하였다. 분석 결과 설계 시 중점적으로 고려해야 할 고장모드를 파악하였으며 하이브리드 로켓의 신뢰도를 높이기 위해 고장모드들의 설계 및 재질 변경 등의 개선 조치를 설계에 반영하였다.

Keywords

References

  1. Martin, F., Chapelle, A., Orlandi, O. and Yvart, P., 2010, "Hybrid Propulsion Systems for Future Space Applications," 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibits, Nashville, TN, pp. 1-21.
  2. Virgin Galatic, World Wide Web location http://www.virgingalatic.com/statement-from-virgingalatic/
  3. Stamatelatos, M, Dezfuli, H., 2011, Probabilistic Risk Assessment Procedures Guide for NSA MAnagers and Practitioners, National Aeronautics and Space Administration, Washington D.C., pp. 1-15.
  4. Shin, M. H., Cho, S. Y. and Kim, H. W., 2016, "Structural-Functional and Failure Modes Analysis and Reliability Modeling on KSLV-II 75-ton Engine System," 2016 KSPE Spring Conference, Korea, pp. 102-116.
  5. Moon, K. H., Kim, J. K and Choi, J. H., 2015, "Semiquantitative Failure Mode, Effect and Criticality Analysis for Reliability Analysis of Solid Rocket Propulsion System," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 6, pp. 631-638. https://doi.org/10.3795/KSME-A.2015.39.6.631
  6. Korea Agency for Technology and Standards, 2007, Reliability Terms Handbook, Korea Agency for Technology and Standards, Korea, pp. 177-185.
  7. Department of Defence, 1980, Procedures for performing a Failure Mode, Effects and Criticality Analysis, Department of Defence, Washington D.C., pp. 9-21.
  8. Wells, W. W., 1996, Solid Rocket Booster Reliability Guidebook-Volume II, Society of Automative Engineers, Inc., Warrendale, pp. 189-203.
  9. Robert, B., Stephen, P. and Michael. R., 1993, Failure Mode, Effects and Criticality Analysis (FMECA), A DoD Information Analysis Center, NewYork, pp. 16-34.
  10. Reliability Information Analysis Center, 1997, Failure Mode / Mechanism Distribution 1997, A DoD Information Analysis Center, NewYork, pp. 13-370.
  11. David, M., William, F., John, R., Peter, Z. and Scott, M., 2011, Nonelectronic Parts Reliability Data 2011-Volume 1, Reliability Information Analysis Center, NewYork, p. 106.
  12. Apogee components, Inc., World Wide Web location, http://www.apogeerockets.com/