• Title/Summary/Keyword: 고장허용제어

Search Result 81, Processing Time 0.027 seconds

Neutral-Point Voltage Balancing Control Scheme for Fault-Tolerant Operation of 3-Level ANPC Inverter (3-레벨 ANPC 인버터의 고장 허용 운전 시 중성점 전압 균형 제어 기법)

  • Lee, Jae-Woon;Kim, Ji-Won;Park, Byoung-Gun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.120-126
    • /
    • 2019
  • This study proposes a neutral voltage balance control scheme for stable fault-tolerant operation of an active neutral point clamped (ANPC) inverter using carrier-based pulse width modulation. The proposed scheme maintains the neutral voltage balance by reconfiguring the switching combination and modulating the reference output voltage in order to solve the degradation of the output characteristic in the fault tolerant operation due to the fault of the power semiconductor switch constituting the ANPC inverter. The feasibility of the proposed control scheme is confirmed by HIL experiment using RT-BOX.

LOS/LOC Scan Test Techniques for Detection of Delay Faults (지연고장 검출을 위한 LOS/LOC 스캔 테스트 기술)

  • Hur, Yongmin;Choe, Youngcheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The New efficient Mux-based scan latch cell design and scan test of LOS/LOC modes are proposed for detection of delay faults in digital logic circuits. The proposed scan cell design can support LOS(Launch-off-Shift) and LOC(Launch-off-Capture) tests with high fault coverage and low scan power and it can alleviate the problem of the slow selector enable signal and hold signal by supporting the logic capable of switching at the operational clock speeds. Also, it efficiently controls the power dissipation of the scan cell design during scan testing. Functional operation and timing simulation waveform for proposed scan hold cell design shows improvement in at-speed test timing in both test modes.

Performance Evaluation of Fault Tolerant Switched Ethernet Architecture for Railway Signal System (철도 신호 시스템을 위한 고장 허용 스위치드 이더넷 구조의 성능 평가)

  • Hwang, Jong-Gyu;Lee, Jae-Ho;Jo, Hyun-Jeong;Kim, Man-Ho;Park, Ji-Hun;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1241-1248
    • /
    • 2006
  • In high reliability systems for industrial network such as railway signal system, fieldbus protocols have been known to satisfy the real-time and fault tolerant requirements. But, the application of fieldbus has been limited due to the high cost of hardware and software, and the difficulty in interfacing with multi-vendor products. Therefore, as an alternative to fieldbus, the computer network technology, especially Ethernet(IEEE 802.3), is being adapted to the industrial network. In this paper, we propose a switched Ethernet based railway signal system because of its very promising prospect for industrial application due to the elimination of uncertainties in the network operation. In addition, we propose the redundancy architecture for the reliability of network components. More specifically, this paper presents an analytical performance evaluation of switched Ethernet for railway signal system, and shows experimental evaluation of redundancy architecture.

Soft error correction controller for FPGA configuration memory (FPGA 재구성 메모리의 소프트에러 정정을 위한 제어기의 설계)

  • Baek, Jongchul;Kim, Hyungshin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5465-5470
    • /
    • 2012
  • FPGA(Field Programmable Gate Array) devices are widely used due to their merits in circuit development time, and development cost. Among various FPGA technologies, SRAM-based FPGAs have large cell capacity so that they are attractive for complex circuit design and their reconfigurability. However, they are weak in space environment where radiation energy particles cause Single Event Upset(SEU). In this paper, we designed a controller supervising SRAM-based FPGA to protect configuration memory inside. The controller is implemented on an Anti-Fusing FPGA. Radiation test was performed on the implemented computer board and the result show that our controller provides better SEU-resilience than TMR-only system.

The Fault Tolerant Evaluation Model due to the Periodic Automatic Fault Detection Function of the Safety-critical I&C Systems in the Nuclear Power Plants (원전 안전필수 계측제어시스템의 주기적 자동고장검출기능에 따른 고장허용 평가모델)

  • Hur, Seop;Kim, Dong-Hoon;Choi, Jong-Gyun;Kim, Chang-Hwoi;Lee, Dong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.994-1002
    • /
    • 2013
  • This study suggests a generalized availability and safety evaluation model to evaluate the influences to the system's fault tolerant capabilities depending on automatic fault detection function such as the automatic periodic testings. The conventional evaluation model of automatic fault detection function deals only with the self diagnostics, and supposes that the fault detection coverage of self diagnostics is always constant. But all of the fault detection methods could be degraded. For example, the periodic surveillance test has the potential human errors or test equipment errors, the self diagnostics has the potential degradation of built-in logics, and the automatic periodic testing has the potential degradation of automatic test facilities. The suggested evaluation models have incorporated the loss or erroneous behaviors of the automatic fault detection methods. The availability and the safety of each module of the safety grade platform have been evaluated as they were applied the automatic periodic test methodology and the fault tolerant evaluation models. The availability and safety of the safety grade platform were improved when applied the automatic periodic testing. Especially the fault tolerant capability of the processor module with a weak self-diagnostics and the process parameter input modules were dramatically improved compared to the conventional cases. In addition, as a result of the safety evaluation of the digital reactor protection system, the system safety of the digital parts was improved about 4 times compared to the conventional cases.

A Novel Modulation Strategy Based on Level-Shifted PWM for Fault Tolerant Control of Cascaded Multilevel Inverters (Cascaded 멀티레벨 인버터의 고장 허용 제어를 위한 Level-Shifted PWM 기반의 새로운 변조 기법)

  • Kim, Seok-Min;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.718-725
    • /
    • 2015
  • This paper proposes a novel level-shifted PWM (LS-PWM) strategy for fault tolerant cascaded multilevel inverter. Most proposed fault-tolerant operation methods in many of studies are based on a phase-shifted PWM (PS-PWM) method. To apply these methods to multilevel inverter systems using LS-PWM, two additional steps will be implemented. During the occurrence of a single-inverter-cell fault, the carrier bands scheme is reconfigured and modulation levels of inverter cells are reassigned in this proposed fault-tolerant operation. The proposed strategy performs balanced three-phase line-to-line voltages and line currents when a switching device fault occurs in a cascaded multilevel inverter using LS-PWM. Simulation and experimental results are included in the paper to verify the proposed method.

A Study on the Fault Tolerance and High Efficiency Control of 4 Leg DC/DC Converter for Battery Energy Storage System in Standalone DC Micro-grid (독립형 DC마이크로그리드 내 BESS용 4 LEG DC/DC 컨버터의 고장허용 및 고효율 제어에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Cha, Dae-Seak;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1239-1248
    • /
    • 2018
  • This paper proposes a fault tolerant and high efficiency operation algorithm for a 4 LEG DC/DC converter for a battery energy storage system(BESS) forming a main power source in a standalone DC micro grid. The BESS for the main power supply in the stand-alone DC micro-grid is required to operate at high speed according to fault tolerant control and load by operating at all times. Fault-tolerance control changes the short-circuit fault to an open-circuit fault by using a fuse in case of leg fault in 4 legs, and operates stably through phase shift control. In addition, considering the loss of the power semiconductor, the number of LEG operation is adjusted to operate at high efficiency in the full load region. In this paper, fault tolerant control and high efficiency operation algorithm of DC/DC converter for BESS in standalone DC micro grid is presented and it is proved through simulation and experiment.

A RFID-Based Multi-Robot Management System Available in Indoor Environments (실내 환경에서 운영 가능한 RFID 기반 멀티 로봇 관리 시스템)

  • An, Sang-Sun;Shin, Sung-Oog;Lee, Jeong-Oog;Baik, Doo-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 2008
  • The multi robot operation technique has emerged as one of the most important research subjects that focus on minimizing redundancy in space exploration and maximizing the efficiency of operation. For an efficient operation of the multi robot systems, the movement of each Single robot in the multi robot systems should be properly observed and controlled. This paper suggests Multi Robot Management System to minimize redundancy in space exploration by assigning exploration space to each robot efficiently to take advantage of the RFID. Also, this paper has suggested fault tolerance technique that detects disable Single robot and substitute it by activated Single robot in order to ensure overall exploration and improve efficiency of exploration. Proposed system overcomes previous fault that it is difficult for central server to detect exact position of robot by using RFID system and Home Robot. Designated Home robot manages each Single robot efficiently and assigns the best suited space to Single robot by using RFID Tag Information. Proposed multi robot management system uses RFID for space assignment, Localization and Mapping efficiently and not only maximizes the efficiency of operation, but also ensures reliability by supporting fault-tolerance, compared with Single robot system. Also, through simulation, this paper proves efficiency of spending time and redundancy rates between multi robot management applied by proposed system and not applied by proposed system.

  • PDF

Fault Tolerance for IEEE 1588 Based on Network Bonding (네트워크 본딩 기술을 기반한 IEEE 1588의 고장 허용 기술 연구)

  • Altaha, Mustafa;Rhee, Jong Myung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.331-339
    • /
    • 2018
  • The IEEE 1588, commonly known as a precision time protocol (PTP), is a standard for precise clock synchronization that maintains networked measurements and control systems. The best master clock (BMC) algorithm is currently used to establish the master-slave hierarchy for PTP. The BMC allows a slave clock to automatically take over the duties of the master when the slave is disconnected due to a link failure and loses its synchronization; the slave clock depends on a timer to compensate for the failure of the master. However, the BMC algorithm does not provide a fast recovery mechanism in the case of a master failure. In this paper, we propose a technique that combines the IEEE 1588 with network bonding to provide a faster recovery mechanism in the case of a master failure. This technique is implemented by utilizing a pre-existing library PTP daemon (Ptpd) in Linux system, with a specific profile of the IEEE 1588 and it's controlled through bonding modes. Network bonding is a process of combining or joining two or more network interfaces together into a single interface. Network bonding offers performance improvements and redundancy. If one link fails, the other link will work immediately. It can be used in situations where fault tolerance, redundancy, or load balancing networks are needed. The results show combining IEEE 1588 with network bonding enables an incredible shorter recovery time than simply just relying on the IEEE 1588 recovery method alone.

Analysis of Train Delay in Daejeon Metro (대전도시철도의 열차 지연운행 분석연구)

  • Kwon, Young-Seok;Lee, Jin-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • This study investigated the causes and problems of train operation impediments through the statistics analysis of 8 years'internal data of Daejeon Metropolitan Express Transit. By evaluating the risks regarding the system, equipment, and parts of high risk group, this study measured the Risk Index Severity, and applied the $5{\times}5$ Risk Assessment Matrix which is a method of risk management to calculate the scale of risk to analyze the safety level and allowance range. As a result, the car sector, the most serious risk, followed by machinery and equipment sector showed that the inherent risk. In particular, the door broken and the door rail signaling and control devices due to defects of the vehicle is high, but also the severity, and frequency are showing very frequent additional potential accidents. PSD also had defects in the machinery sector appeared to be the most dangerous of the PSD poor safety gates, it was found that the glass also involve the risk of mishandling and breakage of the PSD. This study intended to contribute to the transportation benefits through the safety and stable operation of Metropolitan Express Transit.