• Title/Summary/Keyword: 고장예지

Search Result 76, Processing Time 0.022 seconds

자동차의 진화와 전장부품 진단기술의 진화 필요성

  • Han, Chang-Un
    • Journal of the KSME
    • /
    • v.53 no.7
    • /
    • pp.40-43
    • /
    • 2013
  • 이 글에서는 최근 관심을 모으고 있는 고장예지 및 건전성관리(PHM: Prognostics and Health Management) 기술이 자동차 전장부품에 어떻게 적용돼야 하는지에 대한 설명을 하고자 한다.

  • PDF

Development of Dual Sensor for Prognosticating Fatigue Failure of Mechanical Structures (구조물의 피로파괴 예지를 위한 이중센서 개발)

  • Baek, Dong-Cheon;Park, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.721-724
    • /
    • 2016
  • Because of the inherent uncertainties caused by the manufacturing process variations, future loading conditions, and incomplete damage models, the lifetimes of mechanical structures under field conditions are significantly different from the results obtained in the laboratories. In this study, a dual sensor was developed to prognosticate the fatigue failure of structures under these uncertain conditions, and its effectiveness was demonstrated on a rectangular columnar structure under repeated uni-axial loading. The dual sensor is a slightly weaker structure embedded in the target structure, so that failure occurs in the sensor earlier than in the target structure. From the signal differences in the strain gauges in the embedded dual sensor, it is possible to differentiate between the normal status and warning status, even under variable loads.

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial (배터리 잔존 유효 수명 예측을 위한 전기화학 모델 기반 고장 예지 및 건전성 관리 기술)

  • Choi, Yohwan;Kim, Hongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.939-949
    • /
    • 2017
  • Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.

Machine Learning Based Failure Prognostics of Aluminum Electrolytic Capacitors (머신러닝을 이용한 알루미늄 전해 커패시터 고장예지)

  • Park, Jeong-Hyun;Seok, Jong-Hoon;Cheon, Kang-Min;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.94-101
    • /
    • 2020
  • In the age of industry 4.0, artificial intelligence is being widely used to realize machinery condition monitoring. Due to their excellent performance and the ability to handle large volumes of data, machine learning techniques have been applied to realize the fault diagnosis of different equipment. In this study, we performed the failure mode effect analysis (FMEA) of an aluminum electrolytic capacitor by using deep learning and big data. Several tests were performed to identify the main failure mode of the aluminum electrolytic capacitor, and it was noted that the capacitance reduced significantly over time due to overheating. To reflect the capacitance degradation behavior over time, we employed the Vanilla long short-term memory (LSTM) neural network architecture. The LSTM neural network has been demonstrated to achieve excellent long-term predictions. The prediction results and metrics of the LSTM and Vanilla LSTM models were examined and compared. The Vanilla LSTM outperformed the conventional LSTM in terms of the computational resources and time required to predict the capacitance degradation.

Seq2Seq model-based Prognostics and Health Management of Robot Arm (Seq2Seq 모델 기반의 로봇팔 고장예지 기술)

  • Lee, Yeong-Hyeon;Kim, Kyung-Jun;Lee, Seung-Ik;Kim, Dong-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.242-250
    • /
    • 2019
  • In this paper, we propose a method to predict the failure of industrial robot using Seq2Seq (Sequence to Sequence) model, which is a model for transforming time series data among Artificial Neural Network models. The proposed method uses the data of the joint current and angular value, which can be measured by the robot itself, without additional sensor for fault diagnosis. After preprocessing the measured data for the model to learn, the Seq2Seq model was trained to convert the current to angle. Abnormal degree for fault diagnosis uses RMSE (Root Mean Squared Error) during unit time between predicted angle and actual angle. The performance evaluation of the proposed method was performed using the test data measured under different conditions of normal and defective condition of the robot. When the Abnormal degree exceed the threshold, it was classified as a fault, and the accuracy of the fault diagnosis was 96.67% from the experiment. The proposed method has the merit that it can perform fault prediction without additional sensor, and it has been confirmed from the experiment that high diagnostic performance and efficiency are available without requiring deep expert knowledge of the robot.

인공지능을 이용한 공학시스템 상태진단 및 예지

  • Yun, Byeong-Dong;Hwang, Tae-Wan;Jo, Su-Ho;Lee, Dong-Gi;Na, Gyu-Min
    • Journal of the KSME
    • /
    • v.57 no.3
    • /
    • pp.38-41
    • /
    • 2017
  • 이 글에서는 인공지능을 이용한 공학시스템 고장진단 및 예지기술(PHM: Prognostics and Health Management)의 개념을 소개하고, 실제 적용 사례를 제시한다.

  • PDF

Predictive maintenance technology for smart factory (스마트 팩토리를 위한 예지보전 기술)

  • Kwon, Dae-hoon;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.172-174
    • /
    • 2021
  • In the existing industry, maintenance was carried out in the form of preventive maintenance such as occurrence of unnecessary idle time due to limited monitoring and maintenance. However, with the advent of the Fourth Industrial Revolution, real-time monitoring is possible in many industries including mining, manufacturing, oil and gas, and commercial agriculture, and it is desired to minimize idle time due to maintenance. In particular, there is a growing interest in predictive maintenance that can reduce costs and maximize operational efficiency by predicting and maintaining a failure before equipment and equipment fail. In this study, we look at the predictive maintenance technology that can verify the abnormal condition of the equipment of the smart factory in advance and monitor the abnormal condition in real time.

  • PDF

Fault Diagnosis of Drone Using Machine Learning (머신러닝을 이용한 드론의 고장진단에 관한 연구)

  • Park, Soo-Hyun;Do, Jae-Seok;Choi, Seong-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.28-34
    • /
    • 2021
  • The Fourth Industrial Revolution has led to the development of drones for commercial and private applications. Therefore, the malfunction of drones has become a prominent problem. Failure mode and effect analysis was used in this study to analyze the primary cause of drone failure, and blade breakage was observed to have the highest frequency of failure. This was tested using a vibration sensor placed on drones along the breakage length of the blades. The data exhibited a significant increase in vibration within the drone body for blade fracture length. Principal component analysis was used to reduce the data dimension and classify the state with machine learning algorithms such as support vector machine, k-nearest neighbor, Gaussian naive Bayes, and random forest. The performance of machine learning was higher than 0.95 for the four algorithms in terms of accuracy, precision, recall, and f1-score. A follow-up study on failure prediction will be conducted based on the results of fault diagnosis.

Failure Prognostics of Start Motor Based on Machine Learning (머신러닝을 이용한 스타트 모터의 고장예지)

  • Ko, Do-Hyun;Choi, Wook-Hyun;Choi, Seong-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.85-91
    • /
    • 2021
  • In our daily life, artificial intelligence performs simple and complicated tasks like us, including operating mobile phones and working at homes and workplaces. Artificial intelligence is used in industrial technology for diagnosing various types of equipment using the machine learning technology. This study presents a fault mode effect analysis (FMEA) of start motors using machine learning and big data. Through multiple data collection, we observed that the primary failure of the start motor was caused by the melting of the magnetic switch inside the start motor causing it to fail. Long-short-term memory (LSTM) was used to diagnose the condition of the magnetic locations, and synthetic data were generated using the synthetic minority oversampling technique (SMOTE). This technique has the advantage of increasing the data accuracy. LSTM can also predict a start motor failure.