• Title/Summary/Keyword: 고장감지 및 진단

Search Result 51, Processing Time 0.028 seconds

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

Fault Detection and Diagnosis of CAN-Based Distributed Systems for Longitudinal Control of All-Terrain Vehicle(ATV) (무인 ATV의 종 방향 제어를 위한 CAN 기반 분산형 시스템의 고장감지 및 진단)

  • Kim, Soon-Tae;Song, Bong-Sob;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.983-990
    • /
    • 2008
  • This paper presents the fault detection and diagnosis(FDD) algorithm to enhance reliability of a longitudinal controller for an autonomous All-Terrain Vehicle(ATV). The FDD is designed to monitor and identify faults which may occur in distributed hardware used for longitudinal control, e.g., DSPs, CAN, sensors, and actuators. The proposed FDD is an integrated approach of decentralized and centralized FDD. While the former is processed in a DSP and suitable to detect faults in a single hardware, it is sensitive to noise and disturbance. On the other hand, the latter is performed via communication and it detects and diagnoses faults through analyzing concurrent performances of multiple hardware modules, but it is limited to isolate faults specifically in terms of components in the single hardware. To compensate for disadvantages of each FDD approach, two layered structure including both decentralized and centralized FDD is proposed and it allows us to make more robust fault detection and more specific fault isolation. The effectiveness of the proposed method will be validated experimentally.

A Study on the Design of Supervised and Unsupervised Learning Models for Fault and Anomaly Detection in Manufacturing Facilities (제조 설비 이상탐지를 위한 지도학습 및 비지도학습 모델 설계에 관한 연구)

  • Oh, Min-Ji;Choi, Eun-Seon;Roh, Kyung-Woo;Kim, Jae-Sung;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In the era of the 4th industrial revolution, smart factories have received great attention, where production and manufacturing technology and ICT converge. With the development of IoT technology and big data, automation of production systems has become possible. In the advanced manufacturing industry, production systems are subject to unscheduled performance degradation and downtime, and there is a demand to reduce safety risks by detecting and reparing potential errors as soon as possible. This study designs a model based on supervised and unsupervised learning for detecting anomalies. The accuracy of XGBoost, LightGBM, and CNN models was compared as a supervised learning analysis method. Through the evaluation index based on the confusion matrix, it was confirmed that LightGBM is most predictive (97%). In addition, as an unsupervised learning analysis method, MD, AE, and LSTM-AE models were constructed. Comparing three unsupervised learning analysis methods, the LSTM-AE model detected 75% of anomalies and showed the best performance. This study aims to contribute to the advancement of the smart factory by combining supervised and unsupervised learning techniques to accurately diagnose equipment failures and predict when abnormal situations occur, thereby laying the foundation for preemptive responses to abnormal situations. do.

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.

The Power Line Deflection Monitoring System using Panoramic Video Stitching and Deep Learning (딥 러닝과 파노라마 영상 스티칭 기법을 이용한 송전선 늘어짐 모니터링 시스템)

  • Park, Eun-Soo;Kim, Seunghwan;Lee, Sangsoon;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • There are about nine million power line poles and 1.3 million kilometers of the power line for electric power distribution in Korea. Maintenance of such a large number of electric power facilities requires a lot of manpower and time. Recently, various fault diagnosis techniques using artificial intelligence have been studied. Therefore, in this paper, proposes a power line deflection detect system using artificial intelligence and computer vision technology in images taken by vision system. The proposed system proceeds as follows. (i) Detection of transmission tower using object detection system (ii) Histogram equalization technique to solve the degradation in image quality problem of video data (iii) In general, since the distance between two transmission towers is long, a panoramic video stitching process is performed to grasp the entire power line (iv) Detecting deflection using computer vision technology after applying power line detection algorithm This paper explain and experiment about each process.

Development of a Deep Learning Algorithm for Anomaly Detection of Manufacturing Facility (설비 이상탐지를 위한 딥러닝 알고리즘 개발)

  • Kim, Min-Hee;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.199-206
    • /
    • 2022
  • A malfunction or breakdown of a manufacturing facility leads to product defects and the suspension of production lines, resulting in huge financial losses for manufacturers. Due to the spread of smart factory services, a large amount of data is being collected in factories, and AI-based research is being conducted to predict and diagnose manufacturing facility breakdowns or manufacturing site efficiency. However, because of the characteristics of manufacturing data, such as a severe class imbalance about abnormalities and ambiguous label information that distinguishes abnormalities, developing classification or anomaly detection models is highly difficult. In this paper, we present an deep learning algorithm for anomaly detection of a manufacturing facility using reconstruction loss of CNN-based model and ananlyze its performance. The algorithm detects anomalies by relying solely on normal data from the facility's manufacturing data in the exclusion of abnormal data.

A Study on Electrolysis Sterilization Device (전해 살균장치 설계에 관한 연구)

  • Kim, Gwan-Hyung;Jean, Jae-Hwan;Kim, Sung-Hyun;Lee, Jun-Yeon;Kang, Sung-In;Cho, Hyun-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.996-997
    • /
    • 2010
  • This paper is designed for disinfection and sterilization devices, devices based on the monitoring operation to detect the internal fault diagnosis and design a disinfection device Sterilization device monitored the internal state of the TCP / IP-based communications using Ethernet can be managed remotely, the system presented.

  • PDF

Plant-wide On-line Monitoring and Diagnosis Based on Hierarchical Decomposition and Principal Component Analysis (계층적 분해 방법과 PCA를 이용한 공장규모 실시간 감시 및 진단)

  • Cho Hyun-Woo;Han Chong-hun
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • Continual monitoring of abnormal operating conditions i a key issue in maintaining high product quality and safe operation, since the undetected process abnormality may lead to the undesirable operations, finally producing low quality products, or breakdown of equipment. The statistical projection method recently highlighted has the advantage of easily building reference model with the historical measurement data in the statistically in-control state and not requiring any detailed mathematical model or knowledge-base of process. As the complexity of process increases, however, we have more measurement variables and recycle streams. This situation may not only result in the frequent occurrence of process Perturbation, but make it difficult to pinpoint trouble-making causes or at most assignable source unit due to the confusing candidates. Consequently, an ad hoc skill to monitor and diagnose in plat-wide scale is needed. In this paper, we propose a hierarchical plant-wide monitoring methodology based on hierarchical decomposition and principal component analysis for handling the complexity and interactions among process units. This have the effect of preventing special events in a specific sub-block from propagating to other sub-blocks or at least delaying the transfer of undesired state, and so make it possible to quickly detect and diagnose the process malfunctions. To prove the performance of the proposed methodology, we simulate the Tennessee Eastman benchmark process which is operated continuously with 41 measurement variables of five major units. Simulation results have shown that the proposed methodology offers a fast and reliable monitoring and diagnosis for a large scale chemical plant.

  • PDF

The Implemention of RTD-l000A based on ARM Microcontroller (ARM 마이크로컨트롤러 기반 RTD-1000A의 구현)

  • Kim, Min-Ho;Hong, In-Sik
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • With increase of concern about the Ubiquitous application, the necessity of the computer system which is miniaturized is becoming larger. The ARM processor is showing a high share from embedded system market. In this paper, ideal method for RTD-1000 controller construction and development is described using ARM microcontroller. Existing RTD-1000 measures distance of disconnection or defect of sensing casket by measuring receiving reflected wave which was sent via copper wire inside the leaking sensing rod. Using this RTD-1000, leakage and breakage of water and oil pipe can be sensed and it reports damage results to the networks. But, existing RTD-1000 wastes hardware resources much and costs a great deal to installation. Also, it needs a cooling device because the heating problem, and has some problem of the secondary memory unit such as the hard disk. So, long tenn maintenance has some problems in the outside install place. In this paper, for the resolving the problem of RTD-1000, RTD-1000A embedded system based on ARM is proposed and simulated.

  • PDF

Development of the Ice Machine Condition Monitoring System for Remote Diagnosis (원격진단을 위한 제빙기 상태 모니터링 시스템 개발)

  • Kim, Su-hong;Jeong, Jong-mun;Jung, Jin-uk;Jin, Kyo-hong;Hwang, Min-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.230-233
    • /
    • 2016
  • In this paper, we developed the ice machine conditions monitoring system that confirms conditions of the ice machine. The developed system is composed of Communication Board, Server Program, and Web-based User Application. Communication Board which is connected to the ice machine periodically sends various data, such as current, voltage, the refrigerant pressure and temperature, the external temperature and humidity. Server Program stores the data received from Communication Board into database. The manager or the ice machine operator can see the state of the own machine through User Application based on Web. When a symptom is detected on the ice machine, the manager and the operator can checks the current condition of the ice machine by using the data obtained in real time and also prevents the machine troubles by taking proper actions.

  • PDF