• Title/Summary/Keyword: 고유 영상

Search Result 512, Processing Time 0.024 seconds

Illumination Invariant Image Retrieval using Eigenvector Analysis (고유벡터 분석을 이용한 조명 불변 영상 검색)

  • 김용훈;이태홍
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.903-906
    • /
    • 2001
  • 본 논문에서는 조명의 변화에 의해 컬러 영상의 컬러 성분이 달라지더라도 영상 내 컬러간의 편차값을 나타내는 공분산 행렬(covariance matrix)의 고유벡터(eigenvector)와 영상 내 화소들의 컬러 성분과의 상관관계는 거의 변화하지 않는 특징을 이용한 조명 변화에 강인한 영상 검색 방법을 제안한다. 제안된 방법은 영상에서 컬러 성분들의 공분산 행렬과 공분산 행렬의 고유치(eigenvalue), 고유벡터를 계산한 후, 가장 큰 고유치에 관계된 고유벡터로 화소를 투영시키고, 투영된 벡터의 크기 성분으로 영상을 재구성한다. 재구성된 영상으로부터 7개의 불변 모멘트(moment)를 계산하고, 공분산의 가장 큰 고유치를 가중치로 부과하여 특징벡터를 추출한다. 7개의 불변 모멘트로부터 구한 특징벡터는 영상 내 물체의 이동, 영상의 회전, 크기 변화뿐만 아니라, 조명의 변화에 의해 컬러가 변화할 경우에도 유사한 영상을 잘 검색한다. 제안된 방법의 성능 확인을 위하여 5가지 조명에서 얻은 영상 데이터베이스를 이용하여 실험하였으며, 실험 결과 히스토그램 인터섹션에 비해 적은 특징량으로 검색이 가능하면서 조명 변화에도 대응할 수 있는 검색 결과를 얻을 수 있었다.

  • PDF

(Color Eigen-Space Analysis for Efficient Face Image Classification) (효과적인 얼굴 영상 분류를 위한 컬러 고유 공간 분석)

  • 김경수;최형일
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.195-200
    • /
    • 1997
  • 영상을 분류한다거나 물체를 인식하는 방법들은 대부분 흑백 영상에 대한 것이다. 그 이유는 기존의 분류 방법에 어떻게 컬러 정보를 결합시킬 것인가 하는 문제를 쉽게 해결하지 못하거나 처리하는데 훨씬 많은 시간이 소요되기 때문이다. 본 연구에서는 컬러 영상들을 분류하기 위하여 기존의 고유 백터를 컬러 공간에 이용할 수 있는 방법을 제안하고, 이 고유 백터를 이용하여 컬러 얼굴 영상에 대한 분류 실험을 통해 여러 가지 특징에 대한 고유 백터를 영상 분류에 이용할 수 있음을 보였다.

  • PDF

Generation of Facial Expression through Analyzing Eigen-Optical-Flows (고유광류 분석에 의한 얼굴 표정 생성)

  • 김경수;최형일
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.165-168
    • /
    • 1998
  • 얼굴을 인식하는 연구 분야는 얼굴 영상을 분석하는 과정을 거친다. 또한, 얼굴 영상 분석은 얼굴 영상을 이용하는 모든 분야의 연구에 필요한 전처리 과정이라고 할 수 있다. 그러나 얼굴 영상을 분석하는 일은 많은 비용이 든다. 본 연구에서는 이러한 분석과정을 거치지 않고 얼굴 영상을 변형한다. 입력되어지는 얼굴 영상에 나타나는 얼굴 표정을 파악하기 위하여 입력되는 데이터의 변화를 가장 잘 표현해 주는 것으로 널리 알려져 있는 고유 벡터를 이용하며, 기존의 영상을 변형한새로운 영상을 생성하기 위해서 가장 직관적으로 사용할 수 있지만, 광류 영상을 구하는 과정이 시간적으로 많은 비용을 요구하기 때문에, 본 연구에서는 일반 영상에 대한 고유 벡터와 광류 영상에 대한 교유 벡터를 이용하여 고유 벡터 공간 상의 가중치 벡터를 전달하는 방법으로 영상을 처리할 때마다 수행하여야 하는 광류 계산과정을 제거하였다.

  • PDF

Inspection of Coin Surface Defects using Multiple Eigen Spaces (다수의 고유 공간을 이용한 주화 표면 품질 진단)

  • Kim, Jae-Min;Ryoo, Ho-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2011
  • In a manufacturing process of metal coins, surface defects of coins are manually detected. This paper describes an new method for detecting surface defects of metal coins on a moving conveyor belt using image processing. This method consists of multiple procedures: segmentation of a coin from the background, alignment of the coin to the model, projection of the aligned coin to the best eigen image space, and detection of defects by comparison of the projection error with an adaptive threshold. In these procedures, the alignement and the projection are newly developed in this paper for the detection of coin surface defects. For alignment, we use the histogram of the segmented coin, which converts two-dimensional image alignment to one-dimensional alignment. The projection reduces the intensity variation of the coin image caused by illumination and coin rotation change. For projection, we build multiple eigen image spaces and choose the best eigen space using estimated coin direction. Since each eigen space consists of a small number of eigen image vectors, we can implement the projection in real- time.

Face Recognition Using View-based EigenSpaces (시점 기반 고유공간을 이용한 얼굴 인식)

  • 김일정;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.458-460
    • /
    • 1998
  • 본 논문은 주성분 분석으로 시점 기반 고유얼굴(view-based eigenface)을 생성하고, 그에 기반한 얼굴 인식을 수행하고자 한다. 주성분 분석을 통한 고유얼굴 생성은 얼굴 인식의 어려운 문제 중 하나인 특징 선택과 추출이라는 문제를 해결해 준다. 또한 얼굴 표정이나 방향의 변화에도 인식률이 저하되는 것을 방지할 수 있다. 얼굴 영상을 특징공간(고유공간)으로 변환할 때, 원 얼굴영상의 정보를 최대한으로 나타낼 수 있는 최적의 고유치 개수 선택은 얼굴 데이터베이스의 크기와 인식 속도에 영향을 끼친다. 따라서 본 논문에서는 고유치 개수를 고유치의 누적기여율을 이용해서 구한다. 이는 64$\times$64(=4096)차원의 원 얼굴 영상을 5~7차원으로 표현 가능하게 하였다. 그리고, 각 얼굴 방향에 따라 특징공간을 분리해서 생성함으로써 얼굴 방향의 변화에 따라 오인식률을 줄였다. 축소된 차원과 분리된 특징공간은 메모리 사용과 인식속도의 향상에 기여한다. 본 논문에서 얼굴의 인식은 Mahalanobis distance와 재구성 오차율을 고려해서 이루어졌다. 실험은 개인당 세가지 다른 방향을 가지는 얼굴 영상을 이용하여 이루어졌고, 실험결과, 약 93%의 인식률을 보여주었다.

  • PDF

Image Reconstruction of Eigenvalue of Diffusion Principal Axis Using Diffusion Tensor Imaging (확산텐서영상을 이용한 확산 주축의 고유치 영상 재구성)

  • Kim, In-Seong;Kim, Joo-Hyun;Yeon, Gun;Suh, Kyung-Jin;Yoo, Don-Sik;Kang, Duk-Sik;Bae, Sung-Jin;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.110-118
    • /
    • 2007
  • Purpose: The objective of this work to construct eigenvalue maps that have information of magnitude of three primary diffusion directions using diffusion tensor images. Materials and Methods: To construct eigenvalue maps, we used a 3.0T MRI scanner. We also compared the Moore-Penrose pseudo-inverse matrix method and the SVD (single value decomposition) method to calculate magnitude of three primary diffusion directions. Eigenvalue maps were constructed by calculating of magnitude of three primary diffusion directions. We did investigate the relationship between eigenvalue maps and fractional anisotropy map. Results: Using Diffusion Tensor Images by diffusion tensor imaging sequence, we did construct eigenvalue maps of three primary diffusion directions. Comparison between eigenvalue maps and Fractional Anisotropy map shows what is difference of Fractional Anisotropy value in brain anatomy. Furthermore, through the simulation of variable eigenvalues, we confirmed changes of Fractional Anisotropy values by variable eigenvalues. And Fractional anisotropy was not determined by magnitude of each primary diffusion direction, but it was determined by combination of each primary diffusion direction. Conclusion: By construction of eigenvalue maps, we can confirm what is the reason of fractional anisotropy variation by measurement the magnitude of three primary diffusion directions on lesion of brain white matter, using eigenvalue maps and fractional anisotropy map.

  • PDF

An Implementation of The Image Searching System Corresponded with The Montage (몽타주와 일치하는 영상검색 시스템의 구현)

  • 최항영;남경선;윤태승;곽내정;안재형
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.559-564
    • /
    • 2002
  • 본 논문에서는 범죄수사의 초동수사 기법으로 사용되고 있는 몽타주와 실물 사진과의 근사 영상 검색 알고리즘을 제안한다. 입력 몽타주를 얼굴인식 기법에 적용하여 이진영상화와 형태학적 필터로 영상의 잡음을 제거한 후 경계선을 추출하였다. 추출된 경계선 영상으로 레이블링 과정을 거친 후 얼굴의 중요 요소를 포함하는 특징얼굴을 구성한다. 특징얼굴은 웨이블릿 변환을 통해 다운 샘플링 된 LL대역의 계수로 변환되며, 고유값 연산을 통해 계수 매트릭스의 고유 값을 추출 한다. 입력 몽타주의 고유값은 같은 절차를 거친 실물 사진의 저장된 고유값과 계수의 분포를 비교한다. 실험 결과 몽타주와 유사한 실물 사진을 검색할 수 있었으며 영상의 크기 변화와 왜곡 및 압축에 견고한 비교 검색 결과를 얻었다.

  • PDF

Image Matching by First Eigenvector and Histogram Analysis (일차 고유벡터와 히스토그램 분석에 의한 영상 정합)

  • Im, Mun-Cheol;Hwang, Seon-Chul;Kim, Woo-Saeng
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.10
    • /
    • pp.1054-1061
    • /
    • 2000
  • 영상 정합은 물리적으로 유사한 영상 내의 영역들을 기하학적으로 일치시키는 처리이며 지형 정보, 영상검색, 원격탐사, 의료영상 등의 많은 영상처리 응용에서 사용된다. 영상 정합에 관한 연구는 주로 회전, 크기, 위치 등의 인자 추출에 소요되는 시간과 정확성에 중점을 두어 왔다. 본 연구에서는 영상의 특징 점들에 대한 일차 고유벡터의 방향 분포를 히스토그램으로 표현하고 이를 비교 분석함으로써 정합하는 방법을 제안한다. 일차 고유벡터를 이용함으로써 특징 묘사의 단순성을 제공하고. 히스토그램을 이용하여 정합 인자를 미리 추정함으로써 정합 인자 추출 시 목적함수의 연산에 소요되는 비용을 현저하게 줄였다. 본 연구의 결과를 평가하기 위해 제안한 방식을 일반 영상과 ICG(IndoCyanine Green)망막 영상에 적용한 결과를 보여주고 목적함수의 연산횟수와 시간 복잡도를 기존의 방법들과 비교하였다.

  • PDF

Sign Language Images Recognition Using Local Basis Images (국부기저영상을 이용한 수화영상 인식)

  • Yong-Hyun Cho;Seong-Jun Hong;Hwa-Ju Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.615-618
    • /
    • 2008
  • 본 논문에서는 각 개인의 동작영상에 대한 국부고유공간에 바탕을 둔 기저영상을 이용한 효율적인 수화영상 인식 기법을 제안하였다. 여기서 국부고유공간의 추출은 주요성분분석을 이용한 것으로 동작영상의 국소특징을 더욱 더 잘 반영하기 위함이고, 기저영상의 추출은 독립성분분석을 이용한 것으로 수화영상 내에 포함된 고차원의 독립적인 특징들을 반영하여 보다 개선된 인식성능을 얻기 위함이다. 제안된 기법을 240*215 픽셀의 80(1명*5동물*16동작)개 동물을 표현하는 수화동작을 대상으로 Euclidean의 분류척도를 이용하여 실험한 결과, 단순 국부고유공간을 이용한 방법에 비해 우수한 인식성능이 있음을 확인하였다.

Content-Based Image Retrieval using Primary Color Information in Wavelet Transform Domain (웨이블릿 변환 영역에서 주컬러 정보를 이용한 내용기반 영상 검색)

  • 하용구;장정동;이태홍
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.11-14
    • /
    • 2001
  • 본 논문은 컬러를 이용한 영상 검색 방법에 관한 것으로 영상 데이터의 효율적인 관리를 위해 먼저 전처리 단계로 웨이블릿 변환을 수행한 후 가장 낮은 저주파 부밴드 영상을 획득한다. 그리고, 변환 후 획득된 영상을 클러스터로 구분한 후, 고유치 및 고유 벡터를 이용하여 특징을 추출하여 색인 정보로 이용하였다. 클러스터링은 영상 화소의 컬러공간 상의 3차원 거리를 클러스터링의 기준으로 삼아 순차 영역 분할(Sequential Clustering) 방법을 적용하였다.

  • PDF