• Title/Summary/Keyword: 고유 얼굴

Search Result 139, Processing Time 0.027 seconds

Definition of Optimal Face Region for Face Recognition with Phase-Only Correlation (위상 한정 상관법으로 얼굴을 인식하기 위한 최적 얼굴 영역의 정의)

  • Lee, Choong-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.150-155
    • /
    • 2012
  • POC(Phase-Only Correlation) is a useful method that can conduct face recognition without using feature extraction or eigenface, but uses Fourier transformation for square areas. In this paper, we propose an effective face area to increase the performance of face recognition using POC. Specifically, three areas are experimented for POC. The frist area is the square area that includes head and space. The second area is the square area from ear to ear horizontally and from the end of chin to the forehead vertically. The third area is the square area from the line under the lips to the forehead vertically and from cheek to cheek horizontally. Experimental results show that the second face area has the best advantage among the three types of areas to define the threshold for POC.

Approximate Front Face Image Detection Using Facial Feature Points (얼굴 특징점들을 이용한 근사 정면 얼굴 영상 검출)

  • Kim, Su-jin;Jeong, Yong-seok;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.675-678
    • /
    • 2018
  • Since the face has a unique property to identify human, the face recognition is actively used in a security area and an authentication area such as access control, criminal search, and CCTV. The frontal face image has the most face information. Therefore, it is necessary to acquire the front face image as much as possible for face recognition. In this study, the face region is detected using the Adaboost algorithm using Haar-like feature and tracks it using the mean-shifting algorithm. Then, the feature points of the facial elements such as the eyes and the mouth are extracted from the face region, and the ratio of the two eyes and degree of rotation of the face is calculated using their geographical information, and the approximate front face image is presented in real time.

  • PDF

Face classification and analysis based on geometrical feature of face (얼굴의 기하학적 특징정보 기반의 얼굴 특징자 분류 및 해석 시스템)

  • Jeong, Kwang-Min;Kim, Jung-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1495-1504
    • /
    • 2012
  • This paper proposes an algorithm to classify and analyze facial features such as eyebrow, eye, mouth and chin based on the geometric features of the face. As a preprocessing process to classify and analyze the facial features, the algorithm extracts the facial features such as eyebrow, eye, nose, mouth and chin. From the extracted facial features, it detects the shape and form information and the ratio of distance between the features and formulated them to evaluation functions to classify 12 eyebrows types, 3 eyes types, 9 mouth types and 4 chine types. Using these facial features, it analyzes a face. The face analysis algorithm contains the information about pixel distribution and gradient of each feature. In other words, the algorithm analyzes a face by comparing such information about the features.

The Improving Method of Facial Recognition Using the Genetic Algorithm (유전자 알고리즘에 의한 얼굴인식성능의 향상 방안)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.95-105
    • /
    • 2005
  • As the security system using facial recognition, the recognition performance depends on the environments (e. g. face expression, hair style, age and make-up etc.) For the revision of easily changeable environment, it's generally used to set up the threshold, replace the face image which covers the threshold into images already registered, and update the face images additionally. However, this usage has the weakness of inaccuracy matching results or can easily active by analogous face images. So, we propose the genetic algorithm which absorbs greatly the facial similarity degree and the recognition target variety, and has excellence studying capacity to avoid registering inaccuracy. We experimented variable and similar face images (each 30 face images per one, total 300 images) and performed inherent face images based on ingredient analysis as face recognition technique. The proposed method resulted in not only the recognition improvement of a dominant gene but also decreasing the reaction rate to a recessive gene.

  • PDF

Face Detection and Recognition in MPEG Compressed Video (MPEG 압축 비디오 상에서의 얼굴 영역 추출 및 인식)

  • 여창욱;유명현
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.79-87
    • /
    • 2000
  • In this paper we present a face recognition and face detection algorithm in MPEG compressed video. The proposed method consists three stage of processing steps. The first step is to produce a spatially reduced DC image form MPEG compressed video for processing. And the second step is face detection on reduced DC image. Finally, the last step is face recognition on partially extracted compressed frames which contain the detected faces. The spatially reduced DC image is produced from two dimensional inverse DCT of the DC coefficient and the first two AC coefficients. The face detection is performed on DC image and face recognition is performed on one extracted frame per GOP by using the K-L transform. In order to evaluate the proposed method, we carried out experiments on video database. The experiment results show the proposed method is very efficient and helpful for target tasks.

  • PDF

Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model (다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.563-570
    • /
    • 2002
  • Robust extraction of 3D facial features and global motion information from 2D image sequence for the MPEG-4 SNHC face model encoding is described. The facial regions are detected from image sequence using multi-modal fusion technique that combines range, color and motion information. 23 facial features among the MPEG-4 FDP (Face Definition Parameters) are extracted automatically inside the facial region using color transform (GSCD, BWCD) and morphological processing. The extracted facial features are used to recover the 3D shape and global motion of the object using paraperspective camera model and SVD (Singular Value Decomposition) factorization method. A 3D synthetic object is designed and tested to show the performance of proposed algorithm. The recovered 3D motion information is transformed into global motion parameters of FAP (Face Animation Parameters) of the MPEG-4 to synchronize a generic face model with a real face.

Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers (선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식)

  • Oh Byung-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.41-48
    • /
    • 2005
  • This paper presents a face recognition method based on the combination of well-known statistical representations of Principal Component Analysis(PCA), and Linear Discriminant Analysis(LDA) with Radial Basis Function Networks. The original face image is first processed by PCA to reduce the dimension, and thereby avoid the singularity of the within-class scatter matrix in LDA calculation. The result of PCA process is applied to LDA classifier. In the second approach, the LDA process Produce a discriminational features of the face image, which is taken as the input of the Radial Basis Function Network(RBFN). The proposed approaches has been tested on the ORL face database. The experimental results have been demonstrated, and the recognition rate of more than 93.5% has been achieved.

  • PDF

Realtime Facial Expression Data Tracking System using Color Information (컬러 정보를 이용한 실시간 표정 데이터 추적 시스템)

  • Lee, Yun-Jung;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.159-170
    • /
    • 2009
  • It is very important to extract the expression data and capture a face image from a video for online-based 3D face animation. In recently, there are many researches on vision-based approach that captures the expression of an actor in a video and applies them to 3D face model. In this paper, we propose an automatic data extraction system, which extracts and traces a face and expression data from realtime video inputs. The procedures of our system consist of three steps: face detection, face feature extraction, and face tracing. In face detection, we detect skin pixels using YCbCr skin color model and verifies the face area using Haar-based classifier. We use the brightness and color information for extracting the eyes and lips data related facial expression. We extract 10 feature points from eyes and lips area considering FAP defined in MPEG-4. Then, we trace the displacement of the extracted features from continuous frames using color probabilistic distribution model. The experiments showed that our system could trace the expression data to about 8fps.

Pre-processing Method for Face Recognition Robust to Lightness Variation; Facial Symmetry (조명 변화에 강건한 얼굴 인식의 전처리 기법; 얼굴의 대칭성)

  • Kwon Heak-Bong;Kim Young-Gil;Chang Un-Dong;Song Young-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.163-169
    • /
    • 2004
  • In this paper. we propose a shaded recognition method using symmetric feature. When the existing PCA is applied to shaded face images, the recognition rate is decreased. To improve the recognition rate, we use facial symmetry. If the difference of light and shade is greater than a threshold value, we make a mirror image by replacing the dark side with the bright side symmetrically Then the mirror image is compared with a query image. We compare the performance of the proposed algorithm with the existing algorithms such as PCA, PCA without three eigenfaces and histogram equalization methods. The recognition rate of our method shows $98.889\%$ with the excellent result.

  • PDF

Recognizing Facial Expression Using 1-order Moment and Principal Component Analysis (1차 모멘트와 주요성분분석을 이용한 얼굴표정 인식)

  • Cho Yong-Hyun;Hong Seung-Jun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.405-408
    • /
    • 2006
  • 본 논문에서는 영상의 1차 모멘트와 주요성분분석을 이용한 효율적인 얼굴표정 인식방법을 제안하였다. 여기서 1차 모멘트는 영상의 중심이동을 위한 전처리 과정으로 인식에 불필요한 배경의 배제와 계산시간의 감소로 인식성능을 개선하기 위함이다. 또한 주요성분분석은 얼굴표정의 특징인 고유영상을 추출하는 것으로, 이는 2차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 각각 320*243 픽셀의 48개(4명*6장*2그룹) 얼굴표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과 전처리를 수행하지 않는 기존 방법보다 우수한 인식성능이 있음을 확인하였다.

  • PDF