Journal of the Institute of Convergence Signal Processing
/
v.13
no.3
/
pp.150-155
/
2012
POC(Phase-Only Correlation) is a useful method that can conduct face recognition without using feature extraction or eigenface, but uses Fourier transformation for square areas. In this paper, we propose an effective face area to increase the performance of face recognition using POC. Specifically, three areas are experimented for POC. The frist area is the square area that includes head and space. The second area is the square area from ear to ear horizontally and from the end of chin to the forehead vertically. The third area is the square area from the line under the lips to the forehead vertically and from cheek to cheek horizontally. Experimental results show that the second face area has the best advantage among the three types of areas to define the threshold for POC.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.675-678
/
2018
Since the face has a unique property to identify human, the face recognition is actively used in a security area and an authentication area such as access control, criminal search, and CCTV. The frontal face image has the most face information. Therefore, it is necessary to acquire the front face image as much as possible for face recognition. In this study, the face region is detected using the Adaboost algorithm using Haar-like feature and tracks it using the mean-shifting algorithm. Then, the feature points of the facial elements such as the eyes and the mouth are extracted from the face region, and the ratio of the two eyes and degree of rotation of the face is calculated using their geographical information, and the approximate front face image is presented in real time.
Journal of the Korea Institute of Information and Communication Engineering
/
v.16
no.7
/
pp.1495-1504
/
2012
This paper proposes an algorithm to classify and analyze facial features such as eyebrow, eye, mouth and chin based on the geometric features of the face. As a preprocessing process to classify and analyze the facial features, the algorithm extracts the facial features such as eyebrow, eye, nose, mouth and chin. From the extracted facial features, it detects the shape and form information and the ratio of distance between the features and formulated them to evaluation functions to classify 12 eyebrows types, 3 eyes types, 9 mouth types and 4 chine types. Using these facial features, it analyzes a face. The face analysis algorithm contains the information about pixel distribution and gradient of each feature. In other words, the algorithm analyzes a face by comparing such information about the features.
As the security system using facial recognition, the recognition performance depends on the environments (e. g. face expression, hair style, age and make-up etc.) For the revision of easily changeable environment, it's generally used to set up the threshold, replace the face image which covers the threshold into images already registered, and update the face images additionally. However, this usage has the weakness of inaccuracy matching results or can easily active by analogous face images. So, we propose the genetic algorithm which absorbs greatly the facial similarity degree and the recognition target variety, and has excellence studying capacity to avoid registering inaccuracy. We experimented variable and similar face images (each 30 face images per one, total 300 images) and performed inherent face images based on ingredient analysis as face recognition technique. The proposed method resulted in not only the recognition improvement of a dominant gene but also decreasing the reaction rate to a recessive gene.
In this paper we present a face recognition and face detection algorithm in MPEG compressed video. The proposed method consists three stage of processing steps. The first step is to produce a spatially reduced DC image form MPEG compressed video for processing. And the second step is face detection on reduced DC image. Finally, the last step is face recognition on partially extracted compressed frames which contain the detected faces. The spatially reduced DC image is produced from two dimensional inverse DCT of the DC coefficient and the first two AC coefficients. The face detection is performed on DC image and face recognition is performed on one extracted frame per GOP by using the K-L transform. In order to evaluate the proposed method, we carried out experiments on video database. The experiment results show the proposed method is very efficient and helpful for target tasks.
Robust extraction of 3D facial features and global motion information from 2D image sequence for the MPEG-4 SNHC face model encoding is described. The facial regions are detected from image sequence using multi-modal fusion technique that combines range, color and motion information. 23 facial features among the MPEG-4 FDP (Face Definition Parameters) are extracted automatically inside the facial region using color transform (GSCD, BWCD) and morphological processing. The extracted facial features are used to recover the 3D shape and global motion of the object using paraperspective camera model and SVD (Singular Value Decomposition) factorization method. A 3D synthetic object is designed and tested to show the performance of proposed algorithm. The recovered 3D motion information is transformed into global motion parameters of FAP (Face Animation Parameters) of the MPEG-4 to synchronize a generic face model with a real face.
This paper presents a face recognition method based on the combination of well-known statistical representations of Principal Component Analysis(PCA), and Linear Discriminant Analysis(LDA) with Radial Basis Function Networks. The original face image is first processed by PCA to reduce the dimension, and thereby avoid the singularity of the within-class scatter matrix in LDA calculation. The result of PCA process is applied to LDA classifier. In the second approach, the LDA process Produce a discriminational features of the face image, which is taken as the input of the Radial Basis Function Network(RBFN). The proposed approaches has been tested on the ORL face database. The experimental results have been demonstrated, and the recognition rate of more than 93.5% has been achieved.
It is very important to extract the expression data and capture a face image from a video for online-based 3D face animation. In recently, there are many researches on vision-based approach that captures the expression of an actor in a video and applies them to 3D face model. In this paper, we propose an automatic data extraction system, which extracts and traces a face and expression data from realtime video inputs. The procedures of our system consist of three steps: face detection, face feature extraction, and face tracing. In face detection, we detect skin pixels using YCbCr skin color model and verifies the face area using Haar-based classifier. We use the brightness and color information for extracting the eyes and lips data related facial expression. We extract 10 feature points from eyes and lips area considering FAP defined in MPEG-4. Then, we trace the displacement of the extracted features from continuous frames using color probabilistic distribution model. The experiments showed that our system could trace the expression data to about 8fps.
In this paper. we propose a shaded recognition method using symmetric feature. When the existing PCA is applied to shaded face images, the recognition rate is decreased. To improve the recognition rate, we use facial symmetry. If the difference of light and shade is greater than a threshold value, we make a mirror image by replacing the dark side with the bright side symmetrically Then the mirror image is compared with a query image. We compare the performance of the proposed algorithm with the existing algorithms such as PCA, PCA without three eigenfaces and histogram equalization methods. The recognition rate of our method shows $98.889\%$ with the excellent result.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.405-408
/
2006
본 논문에서는 영상의 1차 모멘트와 주요성분분석을 이용한 효율적인 얼굴표정 인식방법을 제안하였다. 여기서 1차 모멘트는 영상의 중심이동을 위한 전처리 과정으로 인식에 불필요한 배경의 배제와 계산시간의 감소로 인식성능을 개선하기 위함이다. 또한 주요성분분석은 얼굴표정의 특징인 고유영상을 추출하는 것으로, 이는 2차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 각각 320*243 픽셀의 48개(4명*6장*2그룹) 얼굴표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과 전처리를 수행하지 않는 기존 방법보다 우수한 인식성능이 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.