• Title/Summary/Keyword: 고유 얼굴

Search Result 139, Processing Time 0.024 seconds

Robust Face Recognition based on Gabor Feature Vector illumination PCA Model (가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식)

  • Seol, Tae-In;Kim, Sang-Hoon;Chung, Sun-Tae;Jo, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.67-76
    • /
    • 2008
  • Reliable face recognition under various illumination environments is essential for successful commercialization. Feature-based face recognition relies on a good choice of feature vectors. Gabor feature vectors are known to be more robust to variations of pose and illumination than any other feature vectors so that they are popularly adopted for face recognition. However, they are not completely independent of illuminations. In this paper, we propose an illumination-robust face recognition method based on the Gabor feature vector illumination PCA model. We first construct the Gabor feature vector illumination PCA model where Gator feature vector space is rendered to be decomposed into two orthogonal illumination subspace and face identity subspace. Since the Gabor feature vectors obtained by projection into the face identity subspace are separated from illumination, the face recognition utilizing them becomes more robust to illumination. Through experiments, it is shown that the proposed face recognition based on Gabor feature vector illumination PCA model performs more reliably under various illumination and Pose environments.

A Study on Extraction of Face Region and Facial Characteristics Point (얼굴 영역 및 구성 요소의 특징점 추출에 관한 연구)

  • 김성식;김진태;김동욱
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.291-294
    • /
    • 2002
  • 본 논문은 얼굴 영역 및 얼굴 구성 요소의 얼굴 특징점을 추출하는 방법을 제안한다. 얼굴 특징점은 얼굴 인식을 하는데 있어서 중요한 자료이다. 얼굴 영역은 객체 단위 추출 방법을 사용하여 얼굴의 고유 영역만을 추출한다. 얼굴의 구성요소는 각 요소간의 기하학적 정보를 이용하여 얼굴 영역 내에서 추출해 간다. 얼굴 구성요소의 특징점은 미리 정해진 위치에서 특징점을 결정한다. 그리고 이런 특징점간의 상호 연관관계를 설정한다.

  • PDF

Robust Glasses Detection using AAM and Anisotropic Smoothing (AAM 및 비등방성 펑활화를 이용한 안경 검출)

  • Jeon, Seung-Seon;Jo, Seong-Won;Jeong, Seon-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.439-442
    • /
    • 2007
  • 강인한 얼굴 인식 시스템을 만들기 위해서는 안경의 제거가 중요한 요소이다. 이를 위해서는 뛰어난 성능의 안경 검출 방법이 필수적이다. 본 논문에서는 안경의 유무 판단에 관한 새로운 방법을 제안한다. 영상은 조명 부분과 반사부분의 곱으로 이루어져 있다. 얼굴의 경우 안경 고유의 반사계수와 얼굴 고유의 반사계수가 다른 점에 착안하여 anisotropic smoothing 방법을 이용하여 입력 얼굴 영상에서의 반사 부분을 얻고, 이를 이용하여 안경의 반사 부분을 얼굴의 반사부분에서 검출한 뒤 이진화한다. 이후, 이진화 된 안경 픽셀 수를 이용하여 안경의 유무를 판단한다.

  • PDF

Face Image Illumination Normalization based on Illumination-Separated Eigenface Subspace (조명분리 고유얼굴 부분공간 기반 얼굴 이미지 조명 정규화)

  • Seol, Tae-in;Chung, Sun-Tae;Ki, Sunho;Cho, Seongwon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-184
    • /
    • 2009
  • Robust face recognition under various illumination environments is difficult to achieve. For face recognition robust to illumination changes, usually face images are normalized with respect to illumination as a preprocessing step before face recognition. The anisotropic smoothing-based illumination normalization method, known to be one of the best illumination normalization methods, cannot handle casting shadows. In this paper, we present an efficient illumination normalization method for face recognition. The proposed illumination normalization method separates the effect of illumination from eigenfaces and constructs an illumination-separated eigenface subspace. Then, an incoming face image is projected into the subspace and the obtained projected face image is rendered so that illumination effects including casting shadows are reduced as much as possible. Application to real face images shows the proposed illumination normalization method.

  • PDF

Face Recognition Using First Moment of Image and Eigenvectors (영상의 1차 모멘트와 고유벡터를 이용한 얼굴인식)

  • Cho Yong-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • This paper presents an efficient face recognition method using both first moment of image and eigenvector. First moment is a method for finding centroid of image, which is applied to exclude the needless backgrounds in the face recognitions by shitting to the centroid of face image. Eigenvector which are the basis images as face features, is extracted by principal component analysis(PCA). This is to improve the recognition performance by excluding the redundancy considering to second-order statistics of face image. The proposed methods has been applied to the problem for recognizing the 60 face images(15 persons *4 scenes) of 320*243 pixels. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. In case of the 45 face images, the experimental results show that the recognition rate of the proposed methods is about 1.6 times and its the classification is about 5.6 times higher than conventional PCA without preprocessing. The city-block has been relatively achieved more an accurate classification than Euclidean or negative angle.

  • PDF

A Study on a Face Detection Using Color Information and Gabor Filter (칼라 정보를 이용한 얼굴 영역 검출 및 Gabor Filter 에 의한 영역 검증에 관한 연구)

  • 한재성;이경무
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.861-864
    • /
    • 2000
  • 본 논문에서는 물체의 고유 칼라 정보 복원을 통하여 조명의 영향을 받지 않는 칼라 기반 얼굴검출 기법을 제안한다. 즉 주위 조명 영향으로부터 RGB 성분 계수를 파악하여 조명 성분에 영향을 받은 성분을 상쇄시키고, 색포화도와 밝기값 보상을 통해 고유 칼라를 복원(color recover)하는 실험을 하였고, 복원된 영상을 YCbCr 좌표계로 변환시킨 후, CbCr 각각에 대해 살색 성분이 나타내는 일정한 범위내의 부분을 검출하였다. 또한 이 진화 과정에서 생긴 잡음들을 형태학적인 모폴로지 필터를 통해 제거하였으며, 살색 후보 영역 중 같은 영역들은 레이블링하여 얼굴 후보 영역을 생성하였다. 그러나 칼라 정보만으로는 검출된 영역이 얼굴인지를 판단하기가 매우 어렵다. 그러므로 본 연구에서는 인간시각에 기반한 Gabor 필터를 사용하여, 검출된 살색 영역이 최종적으로 얼굴인지를 판별하는 효율적인 알고리즘을 제안한다.

  • PDF

Face Recognition using Wavelet Transform and 2D PCA (웨이브릿 변환과 2D PCA를 이용한 얼굴 인식)

  • Kim, Young-Gil;Song, Young-Jun;Chang, Un-Dong;Kim, Dong-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.348-351
    • /
    • 2004
  • In this paper, we propose the face recognition method using Harr wavelet transform and 2D PCA. While previous PCA computed the covariance matrix by using one dimensional vectors, 2D PCA computed the covarinace matrix by using direct two dimensional image and extracted feature vector by solving eigenvalue problem. To gain the face image having the low dimension and robust property, the proposed method uses wavelet transformation. We apply the LL band image data to 2D PCA for face recognition. The experimental results indicate that our method improves recognition rate than 2D PCA into original image.

  • PDF

A Study on Eigenspace Face Recognition using Wavelet Transform and HMM (웨이블렛 변환과 HMM을 이용한 고유공간 기반 얼굴인식에 관한 연구)

  • Lee, Jung-Jae;Kim, Jong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2121-2128
    • /
    • 2012
  • This paper proposed the real time face area detection using Wavelet transform and the strong detection algorithm that satisfies the efficiency of computation and detection performance at the same time was proposed. The detected face image recognizes the face by configuring the low-dimensional face symbol through the principal component analysis. The proposed method is well suited for real-time system construction because it doesn't require a lot of computation compared to the existing geometric feature-based method or appearance-based method and it can maintain high recognition rate using the minimum amount of information. In addition, in order to reduce the wrong recognition or recognition error occurred during face recognition, the input symbol of Hidden Markov Model is used by configuring the feature values projected to the unique space as a certain symbol through clustering algorithm. By doing so, any input face will be recognized as a face model that has the highest probability. As a result of experiment, when comparing the existing method Euclidean and Mahananobis, the proposed method showed superior recognition performance in incorrect matching or matching error.

ID Face Detection Robust to Color Degradation and Partial Veiling (색열화 및 부분 은폐에 강인한 ID얼굴 검지)

  • Kim Dae Sung;Kim Nam Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In this paper, we present an identificable face (n face) detection method robust to color degradation and partial veiling. This method is composed of three parts: segmentation of face candidate regions, extraction of face candidate windows, and decision of veiling. In the segmentation of face candidate regions, face candidate regions are detected by finding skin color regions and facial components such as eyes, a nose and a mouth, which may have degraded colors, from an input image. In the extraction of face candidate windows, face candidate windows which have high potentials of faces are extracted in face candidate regions. In the decision of veiling, using an eigenface method, a face candidate window whose similarity with eigenfaces is maximum is determined and whether facial components of the face candidate window are veiled or not is determined in the similar way. Experimental results show that the proposed method yields better the detection rate by about $11.4\%$ in test DB containing color-degraded faces and veiled ones than a conventional method without considering color degradation and partial veiling.

Study on Key Generation Using Multi-Eigenfaces (다중 고유얼굴 기반의 키 생성 기법 연구)

  • Kim Ae-Young;Lee Sang-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.238-240
    • /
    • 2005
  • 인터넷과 같은 개방된 공간에서 중요한 정보는 상당한 발전을 이룩한 암호화 기술에 의해 보호된다 그러나 컴퓨터의 급속한 발전은 암호화의 근간이 되는 키에 대하여 더욱 길고 안전한 키를 요구한다. 이는 기억해야할 또는 안전하게 소지해야할 정보가 더 많아짐을 의미한다. 이러한 상황에서 개인의 생체정보를 기반으로 하는 키의 이용은 일정 수준의 보안성을 만족하기위한 키의 길이가 증가됨을 억제하고, 외우거나 소지해야하는 불편함도 해소해준다. 그러나 기존의 생체인식 기반의 키 생성 기법 연구는 여러 종류의 생체인식을 동원한 특징점 및 매개변수 정보를 기반으로 하고 있어 실제 활용함에 제한이 있다. 따라서 본 논문에서는 적용할 단 하나의 생체인식으로 얼굴인식을 채택하였고, 이 얼굴인식의 다중 고유얼굴을 이용하여 특징점 및 매개변수 집합을 형성하고, 이 집합으로부터 더욱 안전하고 편리한 키를 생성하는 기법을 연구하였다.

  • PDF