• Title/Summary/Keyword: 고유함수 전개법

Search Result 86, Processing Time 0.024 seconds

Characteristics of Wave Forces by Installation of New Circular Caisson on the Back of Old Circular Caisson (기존 원형케이슨 후면에 신규 원형케이슨 설치에 따른 파력특성 분석)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • In order to increse the stability of old caissons, the design and the construction are performed by installation of new caissons on the back of or on the front of old caissons. In this study, we use the eigenfunction expasnion method to analyze the characteristics of wave forces when new circular caissons are installed on the back of old caissons. The comparison of numerical results between eigenfunction expansion method and ANSYS AQWA is made and the wave force acting on each circular caisson is calculated by considering the wave-structure interaction effect.

Wave Structure Interaction by Installation of New Circular Caissons on Old Circular Caisson Breakwater (기존 원형케이슨방파제에 신규 원형케이슨 추가설치에 따른 파와 구조물간의 상호작용 영향 평가)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.307-321
    • /
    • 2020
  • The design and the construction are carried out by installation of new caissons on the back or the front of old caissons to increase the stability of old caisson breakwater. In this study, we use the eigenfunction expansion method to analyze the effects of wave structure interaction when new circular caissons are installed on the back or the front of old caissons. The comparison of numerical results between present method and Williams and Li is made, and the wave force and the wave run-up acting on each circular caisson are calculated for various parameters by considering the wave structure interaction.

Wave Control by a Surface-Mounted Horizontal Membrane (수면 위에 고정된 수평막에 의한 파랑제어)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • The performance of wave control by a surface-mounted horizontal membrane is analyzed in the frame of linear potential theory. To employ the eigenfunction expansion method, the fluid domain is divided into two regions i.e. region without membrane and membrane-covered region. By matching the each solutions at boundaries of adjacent regions, the complete solution is obtained. The present analytical method solving the scattering problem directly gives the same results as Cho and Kim(1998)'s method solving the diffraction and the radiation problem separately. To verify the developed model, the model test with a surface-mounted horizontal membrane is conducted at the wave tank(36m${\times}$0.91m${\times}$l.22m). The analytic results are in good agreement with the experimental results. The reflection and transmission coefficients are investigated according to the change of membrane tension, length and incident frequencies.

Study on Stokes Flow Past Circular Cylinder in Two-Dimensional Channel (2차원 채널 내의 원형실린더를 지나는 스톡스 유동에 대한 연구)

  • Yoon, Seok-Hyun;Jeong, Jae-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.895-900
    • /
    • 2013
  • A two-dimensional Stokes flow past a circular cylinder in a channel is analyzed. The circular cylinder is located at the center of the channel, and a plane Poiseuille flow exists upstream and downstream far from the circular cylinder. The Stokes approximation is used, and the flow is investigated analytically by using the eigenfunction expansion and the least square methods. From the analysis, the stream function and pressure distribution are obtained, and the pressure and shear stress distributions on the circular cylinder and channel wall are calculated. The additional pressure drop induced by the circular cylinder and the force exerted on it are calculated as functions of the length of the radius of the circular cylinder. For a typical length of the radius of the circular cylinder, the streamline pattern and pressure distribution are shown.

Reflection and Transmission Coefficients by a Surface-Mounted Horizontal Porous Plate (수면 위에 놓인 수평 유공판에 의한 반사율과 투과율)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.327-334
    • /
    • 2013
  • The interaction of oblique incident waves with a surface-mounted horizontal porous plate is investigated using matched eigenfunction expansion method under the assumption of linear potential theory. The new boundary condition on the porous plate suggested by Zhao et al.(2010) when it is situated at the still water surface is used. The imaginary part of the first propagating-mode eigenvalue in the fluid region under a horizontal porous plate, is closely related to the energy dissipation across the porous plate. By changing the porosity, plate width, wave frequencies, and incidence angles, the reflection and transmission coefficients as well as the wave loads on the porous plate are obtained. It is found that the transmission coefficients can be significantly reduced by selecting optimal porous parameter b = 5.0, also increasing the plate width and incidence angle.

Three-Dimensional Wave Control and Dynamic Response of Floating Breakwater Moored by Piers (말뚝계류된 부방파제의 공간파랑제어 및 동적거동에 관한 연구)

  • 김도삼;윤희면
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.183-191
    • /
    • 2002
  • In general, the salient features of the floating breakwater have excellent regulation of sea-water keeping the marine always clean, up and down free movement with the incoming and outgoing tides, capable of being installed without considering the geological condition of sea-bed at any water depth. This study discusses the three dimensional wave transformation of the floating breakwater moored by piers, and its dynamic response numerically. Numerical method is based on the boundary integral method and eigenfunction expansion method. It is known that pier mooring system has higher absorption of wave energy than the chain mooring system. Pier mooring system permit only vertical motion (heaving motion) of floating breakwater, other motions restricted. It is assumed in the present study that a resistant force as friction between piers and floating pontoon is not applied far the vertical motion of the floating breakwater. According to the numerical results, draft and width of the floating breakwater affect on the wave transformations greatly, and incident wave of long period is well transmitted to the rear of the floating breakwater, And the vertical motion come to be large for the short wave period.

Wave Absorbing Characteristics of a Horizontal Submerged Punching Plate (수평형 타공판의 소파특성)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.265-273
    • /
    • 2002
  • In this paper, wave absorbing characteristics of a horizontal submerged punching plate are investigated throughout the calculation and the experiment. The punching plate with the array of circular holes can force the flow to separate and to form eddies of high vorticity and cause significant energy loss. As an analytic tool, the linear water wave theory and the eigenfunction expansion method is applied. Darcy's law that the normal velocity of the fluid passing through the punching plate is linearly proportional to the pressure difference between two sides of the punching plate is assumed. The proportional constant called the porous coefficient is deeply dependent to the porosity. To obtain the relationship between the porosity and the porous coefficient the systematic model test for the punching plates with 6 different porosities is conducted at 2-dimensional wave tank. It is found that the porous coefficient is linearly proportional to the porosity(b=57.63P-0.9717). It is also noted that the optimal porosity value is near P=0.1 and the optimal range of submergence depth is $d/h\\leq0.2$ within entire frequency range.

Performance Analysis of Wave Energy Converter Using a Submerged Pendulum Plate (몰수형 진자판을 이용한 파력발전장치의 성능해석)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The parametric study was performed for performance enhancement of wave energy converter(WEC) using a submerged pendulum plate. The wave exciting moment and hydrodynamic moment were obtained by means of eigenfunction expansion method based on the linear potential theory, and then the roll response of a pendulum plate and time averaged extracted power were investigated. The optimal PTO damping coefficient was suggested to give optimal extracted power. The peak value of optimal extracted power occurs at the resonant frequency. The resonant peak and it's width increase, as the height and thickness of a pendulum plate increase. The mooring line installed at the end of the pendulum plate is effective for extracting wave energy because it can not only induce the resonance with the waves of the installation site but also increase the restoring moment in case of PTO-on. The WEC using a rolling pendulum plate suitable for the shallow water acts as breakwater as well as energy extraction device.

Stokes Flow Through a Microchannel with Projections of Constant Spacing (일정 간격의 돌출부를 갖는 마이크로채널 내의 스톡스 유동 해석)

  • Son, JeongSu;Jeong, Jae-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.335-341
    • /
    • 2015
  • In this study, we analyzed a two-dimensional Stokes flow through a microchannel containing projections with constant spacing attached to each wall. The projections on the top and bottom walls were semi-circular in shape, with in-phase locations. By considering the periodicity and symmetry of the flow, the eigenfunction expansion and least squared error method were applied to determine the stream function and pressure distribution. For some typical radius and spacing values, the streamline patterns and pressure distributions in the flow field are shown, and the shear stress distributions on the boundary walls are plotted. In addition, the average pressure gradients in the microchannel are also calculated and shown with the radius and spacing of the projections. In particular, the results for the case of extremely small gaps between the projections on the top and bottom walls are in good agreement with the lubrication results.

Wave Control by an Array of N Bottom-Mounted Porous Cylinders (N개의 투과성 원기둥 배열에 의한 파랑제어)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.232-241
    • /
    • 2003
  • The interaction of incident monochromiatic waves with N bottom-mounted porous circular cylinders is investigated in the frame of three-dimensional linear potential theory. The fluid domain is divided into N+l regions i.e. a single exterior region and N interior regions, and the diffraction potential in each fluid region is expressed by an eigenfunction expansion method (Williams and Li,2000). The analytic results show that the porous structure reduces both the wave forces and the run-up wave around the cylinder. To verify the developed model, the systematic model test with a line array of porous cylinders is conducted at the wave tank (30m$\times$7m$\times$1.5m). The analytic results are in good agreement with the experimental results within measured frequency range. It is concluded that the breakwater constructed with an array of porous circular cylinders shows the performance of an effective wave barrier together with the seawater-exchange effect and is considered to have vast potentials for the use of seawater-exchanging breakwater in the future.