• Title/Summary/Keyword: 고온 노출

Search Result 393, Processing Time 0.024 seconds

Degradation Characteristics of Carbon Dioxide Absorbents with Different Chemical Structures (상이한 화학적 구조를 가진 이산화탄소 흡수제의 열화특성)

  • Kim, Jun-Han;Lee, Ji-Hyun;Jang, Kyung-Ryong;Shim, Jae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.883-892
    • /
    • 2009
  • We evaluated the degradation properties of various alkanolamine absorbents (MEA, AMP, DEA, and MDEA) having different chemical structures for $CO_2$ capture. The degradation of $CO_2$ absorbent in general was known to be caused by oxygen which is in flue gas and by heat source, respectively. To analyze the effect of $CO_2$ and $O_2$ on degree of degradation, we conducted a variety of experiments at $30^{\circ}C$ and $60^{\circ}C$ (oxidative degradation) and $130^{\circ}C$ and $150^{\circ}C$ (thermal degradation), respectively. DEA showed the worst property for oxidative degradation in the presence of oxygen among the alkanolamine absorbents. In the case of thermal degradation, the degradation of absorbent was occurred for most of absorbents at $150^{\circ}C$. Among these absorbents, MEA and DEA gave the worst results. As a result, AMP which is a primary amine and having a steric hindrance showed the best result through the degradation test. But, the degradation of absorbent proceeded easily in the case of DEA which is a secondary amine and having 2 OH groups in terminal position. Consequently, we have evaluated the degree of degradation of various absorbents having different chemical structures to give the basic data for the development of alkanolamine absorbent.

Influence of Roasting Conditions on Polycyclic Aromatic Hydrocarbon Contents in Ground Coffee Bean (원두커피의 로스팅 조건이 polycyclic aromatic hydrocarbons 생성에 미치는 영향)

  • Nam, He-Jung;Seo, Il-Won;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.362-368
    • /
    • 2009
  • Roasting may lead to the formation of undesired compounds, such as polycyclic aromatic hydrocarbons (PAHs). In this study, green coffee beans were roasted under controlled conditions and the formation of PAHs during the roasting process was monitored. Roasting was performed in a hot air roaster, with an inlet air temperature varying from 150 to $250^{\circ}C$ for 5, 10, and 20 min. The PAH content of the roasted coffee was then evaluated by HPLC-FLD. The levels of total PAHs in Arabica (Colombia, Brazil) and Robusta (India) coffee samples were 1.26-215.07, 1.85-178.14, and 0.18-2.61 ${\mu}g$/kg, respectively.

Effects of Heat Stress on the Developmental Competence of Bovine Cumulus-Oocyte Complex During in vitro Maturation (Heat Stress가 소 난자의 체외성숙과 배반포 발달에 미치는 영향)

  • Kim, Min-Su;Kim, Chan-Lan;Seong, Hwan-Hoo;Kim, Namtae;Kim, Sung Woo
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.65-71
    • /
    • 2017
  • The elevated temperature and high humidity has been known as main reason for heat stress on animals and cause detrimental effects on productivity of organisms and physiological conditions of normal bioactivities. The aims of this study were to evaluate the relationship between time of heat shock simulation during in vitro maturation and developmental competence of subsequent embryo after in vitro fertilization. Heat shocked cumulus-oocyte complexes (COCs) of Korean native cattle were subjected to normal conditions for 22, 21, 18 and 12 h respectively and transferred to heat stress inducing condition at $40.5^{\circ}C$ in other incubator for 0 (control), 1 and 4 h. After maturation for 22 h, the oocytes were fertilized and cultured in mSOF media for 8 d and examined the developmental capacity of embryos. There were no differences in maturation and cleavage rates between 0, 1 and 4 h heat socked oocytes, but blastocysts formation were lower in the 4 h heat stressed oocytes. The apoptotic cells of developed blastocysts were also increased in at day 8 with 4 h heat shocked oocytes. These results indicate that heat shock on oocytes during maturation could cause negative effects on the developmental competence of embryos.

Small Break LOCA Analysis for RCP Trip Strategy for YGN 3&4 Emergency Procedure Guidelines (영광3, 4호기 비상운전지침용 원자로냉각재펌프 정지전략을 위한 소형냉각재상실사고 분석)

  • Seo, Jong-Tae;Bae, Kyoo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.203-215
    • /
    • 1995
  • A continued operation of RCPs during a certain small break LOCA may increase unnecessary inventory loss from the RCS causing a severe core uncovery which might lead to a fuel failure. After TMI-2 accident, the CEOG developed RCP trip strategy called “Trip-Two/Leave-Two” (T2/L2) in response to NRC requests and incorporated it in the generic EPG for CE plants. The T2/L2 RCP trip strategy consists of tripping the first two RCPs on low RCS pressure and then tripping the remaining two RCPs if a LOCA has occurred. This analysis determines the RCP trip setpoint and demonstrates the safe operational aspects of RCP trip strategy during a small break LOCA for YGN 3&4. The trip setpoint of the first too RCPs for YGN 3&4 is calculated to be 1775 psia in pressurizer pressure based on the limiting small break LOCA with 0.15 ft$^2$ break size in the hot leg. The analysis results show that YGN 3&4 can maintain the core coolability even if the operator fails to trip the second too RCPs or trips at worst time. Also, the YGN 3&4 RCP trip strategy demonstrates that both the 10 CFR 50.46 requirements on PCT and the ANSI standards 58.8 requirements on operator action time can be satisfied with enough margin. Therefore, it is concluded that the T2/L2 RCP trip strategy with a trip setpoint of 1775 psia for YGN 3&4 can provide improved operator guidance for the RCP operation during accidents.

  • PDF

A Study on the transition of Explosion to Eire of LPG and Its' Prevention (LP가스 폭발 후 화재 전이 현상 및 전이 방지에 관한 연구)

  • 오규형;이성은
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.20-26
    • /
    • 2004
  • The purpose of this study is to investigate the transition mechanism and prevention mechanism of gas explosion to fire. Transition phenomena of explosion to fire of LPG in the explosion vessel of its size of TEX>$100 cm {\times} 60 cm {\times} 45 cm$ was visualized using the high speed video camera and the mechanism was analysed from the videograph. Newspaper size of $30cm {\times} 20cm$ was used for combustible sample in this experiments and LPG-air mixture was ignited by 10 ㎸ electric spark. Experimental parameter was gas concentration, size of vent area and position of combustible solid. Size of vent area were varied as $10cm {\times} 9cm, 13cm {\times} 10cm, 27cm {\times} 20cm, 40cm {\times} 27cm$, and the position of combustible was varied in 4 point. Carbon dioxide was used to study the prevention mechanism of explosion to fire transition of LPG. Based on this experiment we can find that transition possibility of explosion to fire on solid combustible from explosion is depends on concentration of LPG-air mixture and the exposure time of solid combustibles in high temperature atmosphere of flame and burnt gas. And cooling or inerting of the atmosphere after explosion can be prevent the transition of explosion to fire on solid combustibles from gas explosion.

A Study on Fire Resistance and Spalling of HPC Beam with Fiber-Cocktail in ISO Fire under Loading Condition (표준화재 재하조건하에서 Fiber Cocktail을 혼입한 고강도 콘크리트 보의 폭렬특성 및 내화성능에 관한 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.126-134
    • /
    • 2009
  • In an attempt to control the spalling in high strength concrete, spalling reducer was mixed to identify the effect and thermal characteristics of concrete beam member at high temperature. The member was manufactured in such as way of adding 40~60MPa of high strength concrete into spalling reducer, and then fire resistance performance were monitored under the ISO standard fire load condition in accordance with KS F 2257. As a result of test, fore rate performance of 40MPa beam without spalling reducer was 180minutes, 50MPa was 174minutes and 60MPa was 152minutes, indicating that 50MPa and 60MPa beam appeared 6~28minutes short to become a 3-hour rate. However, 50 and 60MPa beam mixed with spalling reducer appeared to have satisfied the requirements for 180minutes. A spalling was occurred in surface of 50 and 60MPa beam mixed without spalling reducer, while no spalling or surface failure was occurred with 50 and 60MPa beam mixed with spalling reducer. Thus polypropylene fiber mixed with the concrete proved to be effective, but viewing that the surface of 60MPa was peeled off partially, the steel fiber mixed appeared not to be effective for the beam more than 60MPa.

Effect of Hatching and Brooding Season of Chicks on Their Heat Stress Response and Production Performances (병아리의 발생시기 및 육성계절이 열 스트레스 반응과 생산능력에 미치는 영향)

  • Cho, Eun Jung;Choi, Eun Sik;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.46 no.2
    • /
    • pp.77-86
    • /
    • 2019
  • This study was conducted to compare the heat stress response and production performance of chicks hatched in winter and summer. Among the 2,090 Korean native chickens examined, 1,156 hatched in winter and 934 hatched in summer. The amount of telomeric DNA, the expression of heat shock protein (HSP) genes, survival rate, egg production, and body weight were analyzed to evaluate the stress response and production performance of chickens. The results showed that the expression of HSP-70, $HSP-90{\alpha}$, and $HSP-90{\beta}$ genes in the winter-hatched chickens were significantly higher than those in the summer-hatched chickens during the growing and laying period (P<0.05). There was no significant difference in the amount of telomeric DNA between summer- and winter-hatched chickens. The survival rate was significantly higher in the summer-hatched chickens than in the winter-hatched chickens at the laying period (P<0.01). The hen-day egg production and egg weight in the summer-hatched chickens were also significantly higher than those in the winter-hatched chickens (P<0.05). In contrast, age of sexual maturity of winter-hatched chickens was significantly earlier than that of summer-hatched chickens (P<0.01). The body weights from birth to 24 weeks were significantly lighter in the summer-hatched chickens than in the winter-hatched chickens, however, it was reversed after 28 weeks (P<0.05). In conclusion, the chicks hatched in the summer are more resistant to heat stress, with better productivity than the chicks hatched in the winter. These results suggest that the chicks grown at high temperatures have greater adaptability to the thermal environment.

Investigation on Fire Resistance of Mortar Made of Powder Type Sericite (분말형 견운모를 혼입한 모르타르의 내화성능 연구)

  • Park, Ji-Yeon;Kim, So-I;Kim, Seong-Ha;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • Powder type sericite has been actively researched in the area of chemistry and mineralogy in terms of waste recycling. It is a material that can be obtained relatively inexpensively with a low thermal conductivity like general mica, so in order to improve the thermal conductivity of the mortar, powder type sericite was used in this work. Compressive strengths of mortar before and after high temperature exposure were compared and evaluated to determine the fire resistance of mortar with powder type sericite. According to the experimental results, it was found that the compressive strength decreased when powder type sericite was replaced with cement, but the decrease in compressive strength with the increasing amount of powder type sericite was insignificant. When powder type sericite was incorporated, the thermal conductivity decreased, and the residual strengths of the mortar specimens which were heat treated at 600℃, 900℃, and 1,200℃ were higher than that of plain mortar. From the comprehensive evaluation of the experimental results, it can be concluded that the powder type sericite has the potential to be used as a refractory material for cement composites.

Investigation on Fire Resistance of High-Performance Cement Motar with Recycled Fine Aggregate Mixed by Two-Stage Mixing Approach (2단계 배합을 사용한 순환잔골재 혼입 고성능 시멘트 모르타르의 내화성능 연구)

  • Park, Sung-Hwan;Choi, Jun-Ho;Lee, Chi Young;Koo, Min-Sung;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • This study was conducted to confirm the applicability of recycled aggregates as aggregates for structural concrete as a way to respond to the shortage of natural aggregates. The two-stage mixing approach developed by Tam et al. is known to be a method that can improve the mechanical performance of recycled aggregate concrete without the installation of new additional facilities. In this work, modified version of two stage mixing approach, which was used in our earlier work, was introduced to prepare mortar specimens with recycled fine aggregate, and the compressive strength and fire resistance were compared to mortar mixed with normal mixing approach. According to the experimental results from mortar with recycled fine aggregate, the use of two-stage mixing approach was found to be more effective than normal mixing approach for compressive strength development. In addition, the residual strengths of the mortar with two-stage mixing approach was higher than mortar made of normal mixing approach after exposure to 600 and 900 ℃. It is possible to manufacture high-performance cement composites with recycled fine aggregates through the active use of the two-stage mixing approach.

Evaluation of thermal-hydro-mechanical behavior of bentonite buffer under heating-hydration condition at disposal hole (처분공 가열-수화 조건에서 벤토나이트 완충재의 열-수리-역학적 거동 특성 평가)

  • Yohan Cha;Changsoo Lee;Jin-Seop Kim;Minhyeong Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.175-186
    • /
    • 2023
  • The buffer materials in disposal hole are exposed to the decay heat from spent nuclear fuels and groundwater inflow through adjacent rockmass. Since understanding of thermal-hydro-mechanical-chemical (T-H-M-C) interaction in buffer material is crucial for predicting their long-term performance and safety of disposal repository, it is necessary to investigate the heating-hydration characteristics and consequent T-H-M-C behavior of the buffer materials under disposal conditions considering geochemical factors. In response, the Korea Atomic Energy Research Institute developed a laboratory-scale 'Lab.THMC' experiment system, which characterizes the T-H-M behavior of buffer materials under different geochemical conditions by analyzing heating-hydration process and stress changes. This technical report introduces the detail design of the Lab.THMC system, summarizes preliminary experimental results, and outlines future research plans.