• Title/Summary/Keyword: 고온전이

Search Result 608, Processing Time 0.035 seconds

Surface Treatment of Vertically Aligned CNTs Using Atmospheric Pressure Plasma Torch System

  • Lee, Byeong-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.293.1-293.1
    • /
    • 2013
  • 탄소나노튜브(carbon nanotubes; CNTs)는 우수한 물성으로 인하여 전자소자, 에너지 저장매체, 투명전도막, 복합재료 등 매우 다양한 분야에 응용이 가능할 것으로 예측되고 있으며, 더욱이 이러한 특성은 구조변형, 화학적 도핑뿐만 아니라 표면처리를 통해서 제어가 가능하다고 알려져 있다. 이를 위해 기존에는 열처리를 통하여 CNTs를 표면처리한 결과들이 보고되었으나, 고온에서 장시간의 공정이 요구되는 열처리 공정의 단점을 보완하기 위하여 플라즈마 처리를 통해 상온에서 단시간의 공정으로 CNTs를 표면처리하는 방법이 제시되었다. 특히 최근에는, 향후 산업적 응용을 목적으로 종래의 진공 환경에서 벗어나 대기압 연속공정 개발을 위한 대기압 플라즈마 기반의 표면처리 공정에 대하여 관심이 집중되고 있는 상황이다. 본 연구에서는 대기압에서 플라즈마를 안정적으로 방전 및 유지 할 수 있는 플라즈마 토치 시스템을 구축하였고, 이를 이용하여 수직배향 CNTs를 표면 처리함으로써 그 영향을 살펴보았다. CNTs는 $SiO_2$ 웨이퍼 위에 증착한 철 촉매를 이용하여 $750^{\circ}C$에서 수직배향 합성하였으며, 원료가스로는 아세틸렌을 사용하였다. 대기압 플라즈마 장치의 경우 고전압 교류 전원장치를 이용하여 토치타입으로 제작하였다. 플라즈마는 아르곤과 질소가스를 시용하여 방전하고, 기판과의 거리 및 처리시간을 변수로 CNTs를 표면처리하였다. 플라즈마 처리 전후 접촉각 측정을 통하여 소수성이었던 CNTs 표면이 친수성으로 변화하는 것을 확인하였다. 또한 Raman 분석을 통하여 대기압 플라즈마의 처리조건에 따른 CNTs 의 구조적 결함 발생 정도를 정량화 시킬 수 있었다. 이를 통하여 대기압 플라즈마를 이용할 경우, CNTs의 구조적 손상을 최소화 하면서 효율적으로 표면특성을 변화시킬 수 있는 처리조건을 도출하였다.

  • PDF

Comparison Study of Prediction Models for Hot Deformation Behavior of Tool Steel (공구강의 고온 변형 거동 예측을 위한 모델 비교 연구)

  • Kim, Keunhak;Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.180-186
    • /
    • 2018
  • High temperature flow behaviors of Fe-Cr-Mo-V-W-C tool steel were investigated using isothermal compression tests on a Gleeble simulator. The compressive test temperature was varied from 850 to $1,150^{\circ}C$ with the strain rate ranges of 0.05 and $10s^{-1}$. The maximum height reduction was 45%. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrhenius-typed equation with the Zener-Hollomon parameter was proposed to simulate the hot deformation behavior of Fe-Cr-Mo-V-W-C steel. An artificial neural network (ANN) model was also developed to compare with the constitutive model. It was concluded that the ANN model showed more accurate prediction compared with the constitutive model for describing the hot compressive behavior of Fe-Cr-Mo-V-W-C steel.

Experimental Study on the Geochemical and Mineralogical Alterations in a Supercritical CO2-Groundwater-Zeolite Sample Reaction System (초임계 이산화탄소-지하수-제올라이트 시료 반응계에서의 지화학적 및 광물학적 변화에 관한 실험적 연구)

  • Park, Eundoo;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.421-430
    • /
    • 2014
  • In this study, a series of autoclave experiments were conducted in order to investigate the geochemical and mineralogical effects of carbon dioxide on deep subsurface environments. High pressure and temperature conditions of $50^{\circ}C$ and 100 bar, which are representative environments for geological $CO_2$ sequestration, were created in stainless-steel autoclaves for simulating the interactions in the $scCO_2$-groundwater-mineral reaction system. Zeolite, a widespread mineral in Pohang Basin where many researches have been focused as a candidate for geological $CO_2$ sequestration, and groundwater sampled from an 800 m depth aquifer were applied in the experiments. Geochemical and mineralogical alterations after 30 days of $scCO_2$-groundwater-zeolite sample reactions were quantitatively examined by XRD, XRF, and ICP-OES investigations. The results suggested that dissolution of zeolite sample was enhanced under the acidic condition induced by dissolution of $scCO_2$. As the cation concentrations released from zeolite sample increase, $H^+$ in groundwater was consumed and pH increases up to 10.35 after 10 days of reaction. While cation concentrations showed increasing trends in groundwater due to dissolution of the zeolite sample, Si concentrations decreased due to precipitation of amorphous silicate, and Ca concentrations decreased due to cation exchange and re-precipitation of calcite. Through the reaction experiments, it was observed that introduction of $CO_2$ could make alterations in dissolution characteristics of minerals, chemical compositions and properties of groundwater, and mineral compositions of aquifer materials. Results also showed that geochemical reactions such as cation exchange or dissolution/precipitation of minerals could play an important role to affect physical and chemical characteristics of geologic formations and groundwater.

Growth and Useful Component of Angelica gigas Nakai under High Temperature Stress (고온 스트레스에 따른 참당귀의 생육 및 유용성분 특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Park, Sung Hyuk;Jung, Chung Ryul;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.287-296
    • /
    • 2021
  • Recently, the pace of global climate change has tremendously increased, causing extreme damage to crop production. Here, we aimed to examine the growth characteristics and useful components of Angelica gigas under extreme heat stress, providing fundamental data for its efficient cultivation. Plants were exposed to various experimental temperatures (28℃, 34℃, and 40℃), and their growth characteristics and content of useful components were analyzed. At the experimental site, the ambient and soil temperature were 19.38℃ and 21.34℃, ambient and soil humidity were 81.3 % and 0.18 m3/m3, solar radiation was 162.05 W/m2. Moreover, the soil was sandy-clay-loam (pH 6.65), with 2.66% organic matter, 868.52 mg/kg soil available phosphate, and 0.14% nitrogen. Values of most growth characteristics, including the survival rate (85%), plant height (38.66cm), and fresh and dry weight (41.3 g and 14.24 g), were the highest at 28℃. Although the highest content of useful components was observed at 34℃ (3.24%), there were no significant differences across temperatures. Growth characteristics varied across temperatures due to detrimental effects of heat stress, such as accelerated tissue aging, reduced photosynthesis, and delay of growth. Similar content of useful components across temperatures may be due to poor accumulation of anabolic products caused by impaired growth at extremely high temperatures.

Differential Susceptibility to High Temperature and Variation of Seasonal Occurrence between Spodoptera exigua and Plutella xylostella (파밤나방과 배추좀나방의 고온 감수성 차이와 연중 발생 변이)

  • Kim, Minhyun;Lee, Seunghee;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.55 no.1
    • /
    • pp.17-26
    • /
    • 2016
  • Climate change has been regarded as one of main factors to change Korean insect pest fauna. Especially, a global warming model predicts to expand habitat for insect pests originated from tropical or subtropical regions. Two insect pests, the beet armyworm (Spodoptera exigua) and the diamondback moth (Plutella xylostella), are known to overwinter in some greenhouse conditions without diapause induction in Korea. There was a clear difference between these two insects in seasonal occurrence. P. xylostella occurred only at early spring and fall seasons, but did not occur during summer. In contrast, S. exigua maintained their occurrence from late spring to fall seasons. This study set up a hypothesis that the difference in the seasonal occurrence may be resulted from variation in susceptibility to high temperature. To test the hypothesis, heat tolerance was compared between these two insects. Exposure to $42^{\circ}C$ for 40 min killed 100% individuals of P. xylostella larvae. However, most larvae of S. exigua survived in response to $42^{\circ}C$ even for 80 min. Heat tolerance varied among developmental stages in both insects. Highest tolerant stages were $4^{th}$ instar larvae and adults for P. xylostella, but $1^{st}$ instar larvae for S. exigua. Pre-exposure to $37^{\circ}C$ for 30 min significantly increased heat tolerance in both insects. Induction of heat tolerance accompanied with significant increase of glycerol contents in the hemolymph in both insects and up-regulation of three heat shock protein expressions in S. exigua. These results suggest that the differential susceptibility to high temperature explains the disappearance of P. xylostella during summer, at which S. exigua maintains its occurrence.

Distribution of Trypsin Indigestible Substrate (TI) in Seafoods and Its Changes during Processing 2. Changes in TI and In Vitro Apparent Digestibility of Boiled and Dried Anchovy during Processing and Storage (어패류의 Trypsin활성 저해물질의 분포와 가공중의 변화 2. 자건멸치 가공저장중의 Trypsin활성 저해물질과 In Vitro Apparent Digestibility의 변화)

  • LEE Kang-Ho;JO Jin-Ho;RYU Hong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.101-108
    • /
    • 1984
  • In order to study the optimal conditions of processing and storage for boiled and dried anchovy (Engraulis japonica) with high protein digestibility, the contents of trypsin indigestible substrate (TI) and in vitro apparent protein digestibility were determined. Peroxide value (PoV), TBA number and nonenzymatic brown pigments, that accounted for important antinutritional factors, were also measured and confirmed the relationship between those factors and formation of TI or in vitro protein apparent digestibility. The results were as follows; Samples boiled for 5 minutes showed the lower content of TI than the other samples boiled for 0.5 min. or 1 min. Hot air dried products had a lower TI content in comparison with the other dried ones such as sun dried or freeze dried products. It was revealed that the lower temperature ($8{\pm}1^{\circ}C$) did not affect to a great degree of forming TI and falling in vitro digestibility comparing to high temperature ($26{\pm}1^{\circ}C$) during storage. The lowest TI content (0.173 mg/g solid) was noted in the samples for 5 minutes and then sun drying after 56 days storage at $9{\pm}1^{\circ}C$. A rapid decrease of in vitro protein digestibility occurred within 0.5 min. of boiling and showed the value $85.3\%$. Freeze dried samples possessed the highest in vitro protein digestibility ($85.9\%$), when compared to sun dried or hot air dried products. Fat oxidation and nonenzymatic browning were proceeded with the various boiling times, drying methods and storing temperatures. It was noted that boiling for 5 minutes and freeze drying accelerate the fat oxidation significantly. More nonenzymatic brown pigments was developed in samples boiled for shorter time (0.5 min.) and that stored at high temperature ($26{\pm}1^{\circ}C$) than the other products. Therefore, fat oxidation and nonenzymatic browning assumed to be a major inhibitory reaction in enzyme digestion and those might be an important role in forming TI in boiled and dried anchovy products during processing and storage.

  • PDF

Cultivation Demonstration of Paprika (Capsicum annuum L.) Cultivars Using the Large Single-span Plastic Greenhouse to Overcome High Temperature in South Korea (고온기 대형 단동하우스를 이용한 파프리카 품종별 재배실증)

  • Yeo, Kyung-Hwan;Park, Seok Ho;Yu, In Ho;Lee, Hee Ju;Wi, Seung Hwan;Cho, Myeong Cheoul;Lee, Woo Moon;Huh, Yun Chan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.429-440
    • /
    • 2021
  • During the growing period, the integrated solar radiation inside the greenhouse was 12.7MJ·m-2d-1, and which was 90% of the average daily global radiation outside the greenhouse, 14.1MJ·m-2d-1. The 24-hour average temperature inside the greenhouse from July to August, which has the highest temperature of the year, was 3.04℃ lower than the outside temperature, and 4.07℃ lower after the rainy season. Before the operation of fog cooling system, the average daily RH (%) was lowered to a minimum of 40% (20% for daytime), making it inappropriate for paprika cultivation, but after the operation of fog system, the daily RH during the daytime increased to 70 to 85%. The average humidity deficit increased to a maximum of 12.7g/m3 before fog supply, but decreased to 3.7g/m3 between July and August after fog supply, and increased again after October. The daytime residual CO2 concentration inside the greenhouse was 707 ppm on average during the whole growing period. The marketable yield of paprika harvested from July 27th to November 23rd, 2020 was higher in 'DSP-7054' and 'Allrounder' with 14,255kg/10a and 14,161kg/10a, respectively, followed by 'K-Gloria orange', 'Volante' and 'Nagono'. There were significant differences between paprika cultivars in fruit length, fruit diameter, soluble solids (°Brix), and flash thickness (mm) of paprika produced in summer season at large single-span plastic greenhouse. The soluble solids content was higher in the orange cultivars 'DSP-7054' and 'Naarangi' and the flesh thickness was higher in the yellow and orange cultivars, with 'K-Gloria orange' and 'Allrounder' being the thickest. The marketable yield of paprika, which was treated with cooling and heating treatments in the root zone, increased by 16.1% in the entire cultivars compared to the untreated ones, increased by 16.5% in 'Nagano', 10.3% in the 'Allrounder', 20.2% in the 'Naarangi', and 17.3% in 'Raon red'.

Effects of Ginseng By-Products Supplementation on Performance, Blood Biochemical Profiles, Organ Development, and Stress Parameter in Broiler under Heat Stress Condition (인삼 부산물의 첨가 급여가 고온 스트레스 하 육계의 생산성, 혈액조성, 장기발달 및 스트레스 지표에 미치는 영향)

  • Jun-Ho, Lee;Ji-Won, Yoon;Bong-Ki, Kim;Hee-Bok, Park;Kyu-Sang, Lim;Ji-Hyuk, Kim
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.255-264
    • /
    • 2022
  • This study was performed to investigate the effects of dietary supplementation with ginseng by-products on growth, organ development, blood biochemical profiles, immune response, and stress parameter of broilers reared in high ambient temperatures. One hundred one-day-old male chicks (Ross 308) were used. At week two, the birds were randomly allocated into five dietary groups; control (CON), 0.5% ginseng berry (GB1), 1.0% ginseng berry (GB2), 0.5% ginseng leaves and stems (GLS1), and 1.0% ginseng leaves and stems (GLS2). The temperature was maintained at 32±1℃from 9 AM to 5 PM. Growth, serum immunoglobulins and corticosterone levels were monitored and analyzed. No significant differences among groups were observed in growth. However, during the finisher period (21~35d) and overall period (7~35 d), body weight gain in all supplemented groups tended higher than CON group. Blood biochemical profiles did not significantly differ among treatment groups except in bilirubin level. Serum immunoglobulins and corticosterone level showed no significant differences among groups. IgM and IgG levels were numerically higher in GLS1 than in other groups, but the difference was not significant. Corticosterone level also tended lower in all supplemented groups than in CON group, and larger decreases were observed in groups with higher ginseng by-product concentration. In conclusion, dietary supplementation of ginseng by-products shows potential to reduce heat stress in growing broilers with no negative effect on productivity.

Effects of Harvest Seasons on Quality and Microbial Population of Fresh-cut Iceberg Lettuce (수확시기가 신선편이 결구상추의 품질 및 미생물수에 미치는 영향)

  • In, Byung-Chun;Kim, Ji-Gang;Nimikeatkai, Hataitip;Lee, Jung-Soo
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.343-350
    • /
    • 2010
  • This study was conducted to investigate the effect of harvest seasons on quality and microbial population at different steps of production chain of fresh-cut iceberg lettuce. Iceberg lettuces harvested in May, June, July, October, and December were processed following industrial practices, and stored at $5^{\circ}C$ for 9 days. For microbial measurement, samples were taken from each of the following steps: harvest, transport, pretreatment, cutting, 1st-washing, 2nd-washing, and day 3, 6, and 9 of storage. Iceberg lettuce cultivated in protect house and harvested in May and October showed higher $CO_2$ levels in the packages and electrolyte leakages than lettuce harvested in June, July and December. Microbial population of raw materials harvested in July was highest (6.76 log), and microbial growth rate during storage was highest in samples harvested in May. Lettuce harvested in June had better quality and microbial safety compared to other lettuces. Although lettuce harvested in October and December had less microbial population in either raw materials or processed products, those samples had inferior quality due to off-odor development and severe browning. Therefore, it is required to maintain quality and ensure microbial safety to distribute fresh-cut lettuce with high quality and safety throughout the year.

Distribution of Benthic Diatoms in Tidal Flats of Hampyeong Bay, Korea (함평만 갯벌의 저서규조류 분포 특성)

  • Lee, Hak-Young;Jung, Myoung-Hwa
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • The distributional pattern of benthic diatoms in tidal flats of Hampyeong Bay, Korea, was studied from January to October in 2009. As benthic diatoms of Hampyeong Bay tidal flats, 45 species were identified, and the most dominant species was Paralia sulcata. The most diverse flora was observed at Gaip and Songseok sites in April with 22 species, and the least at Hyeonhwa site in January. The ranges of chlorophyll-a concentration in tidal flats were 21.2~31.8 mg$m^{-2}$ at Hyeonhwa site, 23.6~35.4 mg $m^{-2}$ at Gaip site, and 24.2~34.3 mg $m^{-2}$ at Songseok site. The concentrations of pheopigment ranged between 25.3 and 45.2 mg$m^{-2}$. The standing crops of benthic diatoms showed highest density in April and lowest in January, February, and October. The cell volumes of benthic diatoms were highest in April. The taxa and biomass of benthic diatoms showed correlations with temperature. On temperature variables, the benthic diatoms showed optimal occurrences at the range of $14{\sim}17^{\circ}C$.