• 제목/요약/키워드: 고온설계

검색결과 812건 처리시간 0.032초

Performance Test of 400kW Enhanced Huels Type Plasma Generator (400kW 개량형 고온플라즈마 발생장치 성능평가연구)

  • Park, Sang-Hun;Lee, Ki-Seon;Lee, Sueng-Jin;Hwang, Lee-Ho;Rhee, Byong-Ho;Na, Jae-Jeong;Lee, Jung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.537-540
    • /
    • 2010
  • An Enhanced Huels Type Plasma Torch that generates over $5000^{\circ}C$ plasma arc flow is the core equipment of arc-jet wind tunnel. It is applied to the high-tech areas such as a new materials development and eco-friendly industry. Although the Enhanced Huels Type Plasma Torch produce uniform flow of high purity, its complicated structure and operating condition makes the commercialization of it to be difficult. The 400kW arc-jet generator using the enhanced Huels type plasma torch was tested. The result of this study showed that the torch was operated in the range of 280~320 A and 250~1350 V.

  • PDF

Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II) (소형 PCHE 시제품에 대한 거시적 고온 구조 해석 모델링 (II))

  • Song, Kee-Nam;Lee, Heong-Yeon;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제35권9호
    • /
    • pp.1137-1143
    • /
    • 2011
  • The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at $950^{\circ}C$ to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype.

High-temperature Structural Analysis of Small-scale Prototype of Process Heat Exchanger (III) (공정열교환기 소형 시제품에 대한 고온구조해석(III))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제35권2호
    • /
    • pp.191-200
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component of nuclear hydrogen system for massive production of hydrogen; the PHE transfers the very high temperature heat ($950^{\circ}C$) generated from the VHTR (Very High Temperature Reactor) to a chemical reaction. The Korea Atomic Energy Research Institute developed a small-scale gas loop for testing the performance of VHTR components and manufactured a modified PHE prototype for carrying out the testing in the gas loop. In this study, as a part of the evaluation of the high-temperature structural integrity of the modified PHE prototype which is scheduled to test in the gas loop, we carried out high-temperature structural analysis modeling, macroscopic thermal and structural analysis of the PHE prototype under the gas loop test conditions as a precedent study before carrying out the performance test in the gas loop. The results obtained in this study will be used to design the performance test setup for the modified PHE prototype.

Development of Al-SiC Metal Matrix Composites by using Hot Press Forming Technologies (열간가압성형기술을 이용한 Ai-SiC 금속기 복합재료 개발)

  • Jeon, Ho-Jin;Kim, Tae-Won
    • Composites Research
    • /
    • 제20권4호
    • /
    • pp.9-17
    • /
    • 2007
  • Powder metallurgy has been employed for the development of SiC particle reinforced aluminum metal matrix composites by means of hot isotropic pressing and vacuum hot pressing. A material model based on micro-mechanical approach then has been presented for the processes. Densification occurs by the inelastic flow of matrix materials during the consolidation, and consequently it depends on many process conditions such as applied pressure, temperature and volume fraction of reinforcement. The model is implemented into finite element software so that the process simulation can be performed enabling the predicted relative density to be compared with experimental data. In order to determine the performance of finished products, further tensile test has been conducted using the developed specimens. The effect of internal void of the materials on mechanical properties therefore can be investigated.

A Study on Development of Superconducting Wires for a Fault Current Limiter (한류기용 초전도 선재개발에 관한 연구)

  • Hwang, Kwang-Soo;Lee, Hun-Ju;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제17권2호
    • /
    • pp.279-290
    • /
    • 2022
  • A superconducting fault current limiter(SFCL) is a power device that exploits superconducting transition to control currents and enhances the flexibility, stability and reliability of the power system within a few milliseconds. With a high phase transition speed, high critical current densities and little AC loss, high-temperature superconducting (HTS) wires are suitable for a resistive-type SFCL. However, HTS wires due to the lack of optimization research are rather inefficient to directly apply to a fault current limiter in terms of the design and capacity, for the existing method relied the characteristics. Therefore, in order to develop a suitable wire for an SFCL, it is necessary to enhance critical current uniformity, select optimal stabilizer materials and conducted research on the development of uniform stabilizer layering technology. The high temperature superconducting wires manufactured by this study get an average critical current of 804 A/12mm-width at the length of 710m; therefore, conducted research was able to secure economic performance by improving efficiency, reducing costs, and reducing size.

마이크로파 응용을 위한 고온초전도 필터 서브-시스템

  • 강광용;김현탁;곽민환
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제14권3호
    • /
    • pp.20-40
    • /
    • 2003
  • Since unloaded Q-value of a high-temperature superconductor(HTS) filter is very high, a bandpass filter(BPF) and a lowpass filter(LPF) with an increase of pole numbers can be fabricated without an increase of an insertion loss(IL) ; recently a 70-pole BPF is developed in USA. They have an abrupt skirt property and an excellent attenuation level for out-of band. Moreover, they can be miniaturized when lumped element resonators or the slow-wave characteristic are used. Technology of fabricating a HTS epitaxial film as well as a film of a 4 inch area also makes the planar type filter with a various structure and an enhanced power handling capability possible. Recently, the HTS filter subsystems composed of a planar-type HTS filters, a GaAs-based LNA and a mini-cryocooler are developed. The extended receiver front- end subsystems for mobile radio communications decrease the noise-figure level of the communication system and the frequency interference interacted adjacent bands, and increase the efficiency of frequency and the capacity of communication system. In this paper, theory for developing the HTS filter, its kinds, its design rules, its characteristics are reviewed. The feature of the research and market trends related to the HTS filter systems for the receiver front-end subsystem of mobile base station are surveyed.

Investigation of the High Temperature Shift for a Generation of High Purity Hydrogen (고순도 수소생산을 위한 고온전이 반응 연구)

  • Lim, Mun Sup;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • 제19권2호
    • /
    • pp.157-160
    • /
    • 2008
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$ (steam) followed by water gas shift (WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift (HTS) and a low temperature shift (LTS). In a typical operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about 3~5%. The HTS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to a range of 2~4%. The iron based catalysts (G-3C) was used for the HTS to convert the most of CO in the effluent from the partial oxidation (POX) to $H_2$ and $CO_2$ at a relatively high rate. Parametric screening studies were carried out for variations of the following variables: reaction temperature, steam flow rate, components ratio ($H_2/CO$), and reforming gas flow rate.

Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell (5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계)

  • Jeong, Jin Hee;Han, Jae Young;Sung, Yong Wook;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제39권6호
    • /
    • pp.505-511
    • /
    • 2015
  • Solid oxide fuel cell operate at high temperature ($800{\sim}1000^{\circ}C$). High temperature have an advantage of system efficiency, but a weak durability. In this study, linear state space controller is designed to handle the temperature of solid oxide fuel cell system for proper thermal management. System model is developed under simulink environment with Thermolib$^{(R)}$. Since the thermally optimal system integration improves efficiency, very complicated thermal integration approach is selected for system integration. It shows that temperature response of fuel cell stack and catalytic burner are operated at severe non-linearity. To control non-linear temperature response of SOFC system, gain scheduled linear quadratic regulator is designed. Results shows that the temperature response of stack and catalytic burner follows the command over whole ranges of operations.

Study on Heat Transfer Characteristic in Combustor Nozzle (연소기 노즐에서의 열전달 특성 연구)

  • NamKoung, Hyuck-Joon;Kim, Hwa-Jung;Han, Poong-Gyoo;Lee, Kyoung-Hun;Kim, Young-Soo;Jeong, Hae-Seung;Lee, Sang-Youn
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.34-40
    • /
    • 2006
  • For a cooling performance research of the combustor operated in a extreme environment of a high temperature and high pressure, we accomplished a cooling performance analysis. Generally a heat transfer characteristic in cooling passage is known well experimentally and theoretically, however heat flux in the combustion chamber isn't. In this study, fluid flow combined with heat transfer and thermal structural analysis is accomplished about a combustor nozzle. We tried to analyze the cooling performance with a heat transfer characteristic of a gas and coolant side in the view point of quantity on the mass flow rate to be supplied to the cooling channel. And finally, evaluation on the thermal and structural safety of nozzle wall material was accomplished.

  • PDF

Estimation of the maximum magnetic field applied perpendicularity on the HTS conductor for a large scale SMES (SMES용 고온초전도 코일에 인가되는 최대 자기장의 계산)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1120-1121
    • /
    • 2015
  • 대용량 SMES(Superconducting Magnetic Energy Storage)를 제작하기 위해서는 높은 자장특성을 가고 있는 2세대 HTS(High-Temperature Superconductor) 선재를 사용하는 것이 효율적이다. SMES의 에너지밀도를 높이기 위해서는 선재에 많은 전류를 흘려야 하는데, 수직자기장이 커지면 임계전류가 작아지는 2세대 HTS 선재의 특성상 토로이드형태의 SMES가 유리하다. SMES를 설계하기 전에 선재의 사용량을 줄이고 체적을 줄이기 위해서 정확한 설계와 평가가 필요하다. 유한요소법을 사용한 상용프로그램을 이용하여 쉽게 해석할 수 있으나 토로이드 형태의 SMES는 대칭성의 문제로 3차원 해석을 해야만 한다. 그러나 2차원 해석에 비해 여러 가지 제약조건이 따르며 해석 시간이 많이 소요된다. 본 논문에서는 이러한 문제점을 해결하기 위해 분석적이고 통계적으로 고온 초전도 코일에서 작용하는 최대 수직자장을 결정하는데 이해하기 쉽고 효율적으로 계산하는 방법을 제시했다. 본 논문에서는 싱글펜케이크코일의 크기에 따른 최대 자장값을 계산하였고 싱글펜케이크코일이 토로이드형태로 배치된 토로이드 모델에서 주변코일이 싱글펜케이크코일의 미드포인트에 미치는 자장값을 계산하여 두 계산값을 합하는 방식으로 최대 자기장을 계산하였다. 이 방법은 현저한 시간단축과 효율적인 설계를 할 수 있는 새로운 계산 방법으로 기존 FEM을 사용해 걸리는 시간에 비해 1/1000정도의 시간단축을 할 수 있었다.

  • PDF