• Title/Summary/Keyword: 고온내성

Search Result 75, Processing Time 0.03 seconds

Introduction of Chloroplast Small Heat Shock Protein Increases Photosynthesis and Thermotolerance in Transgenic Plants (엽록체 Small Heat Shock Protein의 도입에 따른 형질전환 식물체의 광합성 활성 및 고온내성의 증가)

  • Lee, Byung-Hyun;Jo, Jin-Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.17
    • /
    • pp.15-20
    • /
    • 1999
  • To investigate the function of the chloroplast small heat shock protein (small HSP), transgenic tobacco plants (Nicotiana tabacum L., cv. SRI) that show constitutive expression of the chloroplast small HSP were generated. Effects of constitutive expression of the introduced gene on thermotolerance were first probed with the chlorophyll fluorescence. After a 5-min incubation of leaf discs at high temperatures, an increase in the Fo level and a decrease in the Fv level, indications of separation of LHCII from PSII and inactivation of electron transport reactions in PSII, were mitigated by constitutive expression of the small HSP. When tobacco plantlets grown in Petri dishes were incubated at $52^{\circ}C$ for 45 min and subsequently incubated at $25^{\circ}C$, leaf color of nontransformants was gradually became white and all plantlets finally were died. Under conditions in which all nontransformants were dying, more than 80% of the transformants remained green and survived. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress.

  • PDF

Expression of Rice Small HSP Enhances Thermotolerance of Escherichia coli under Heat Stress (벼 Small HSP의 발현에 의한 대장균의 고온 stress 하에서의 내성의 증가)

  • Lee, Byung-Hyun;Lee, Hyo-Shin;Won, Sung-Hye;Jo, Jin-Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.17
    • /
    • pp.59-63
    • /
    • 1999
  • A cDNA encoding rice chloroplast small HSP, Oshsp21, was introduced into Escherichia coli using the pET expression vector to analyze the possible function of Oshsp21 under heat stress. We compared the viability of E. coli ${\lambda}BL21$ (DE3) cells transformed with recombinant plasmid containing Oshsp21 with the control E. coli cells transformed with pET28a vector under heat stress after IPTG induction. Upon heat treatment at $50^{\circ}C$, those cells that expressed Oshsp21 showed improved viability compared with control cells. When the cell lysates from E. coli transformants were heated at $55^{\circ}C$, the amounts of proteins denatured in the control and pEhsp21-transformed cells were about 60% and 35% of total cell proteins, respectively. These results indicate that rice chloroplast small HSP function as a molecular chaperone in cells.

  • PDF

벼로부터 chloroplast small heat shock protein cDNA의 cloning 및 characterization

  • 이병현;원성혜;이효신;김기용;김미혜;정동민;조진기
    • Proceedings of the Korean Society of Grassland Science Conference
    • /
    • 1999.06a
    • /
    • pp.71.2-72
    • /
    • 1999
  • 고등식물에 있어서 엽록체에 존재하는 저 분자량 heat shock protein (smHSP)은 식물의 내열성 획득에 있어서 필수유전자임이 mutant를 이용한 유전학적인 연구에 의해 보고된 바 있다. 고온내성이 강한 작물인 벼로부터 엽록체 smHSP cDNA를 분리하고자 벼의 잎에서 분리한 mRNA로 작성한 cDNA library로부터 screening하였다. 선발된 smHSP cDNA는 1,026 bp의 염기로 구성되어 있었으며, 239개의 아미노산으로 구성되는 예상분자량 26.6 kDa의 단백질을 code하고 있었다. 또한 다른 식물로부터(중략)

  • PDF

Selection of Transgenic Potato Plants Expressing Both CuZnSOD and APX in Chloroplasts with Enhanced Tolerance to Oxidative Stress (CuZnSOD와 APX를 엽록체에 발현시킨 산화스트레스 내성 형질전환 감자의 선발)

  • Tang, Li;Kwon, Suk-Yoon;Sung, Chang-K;Kwak, Sang-Soo;Lee, Haeng-Seoon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.109-113
    • /
    • 2004
  • In order to develop transgenic potato plants with enhanced tolerance to multiple stress, we constructed the transformation vector expressing both superoxide dismutase and ascorbate peroxidase genes in chloroplasts under the control of a stress-inducible SWPA2 promoter. Transgenic potato plants (cv. Superior and Atlantic) were generated using an Agrobacterium-mediated transformation system. Transgenic potato plants were regenerated on MS medium containing 100mg/L kanamycin. Genomic Southern blot analysis confirmed the incorporation of foreign genes into the potato genome. When potato leaf discs were subjected to methyl viologen (MV) at 10 $\mu$M, transgenic plants showed higher tolerance than non-transgenic or vector-transformed plants. To further study we selected the transgenic plant lines with enhanced tolerance against MV. These plants will be used for further analysis of stress-tolerance to multiple environmental stresses.

Selection of Transgenic Potato Plants Expressing NDP Kinase 2 Gene with Enhanced Tolerance to Oxidative Stress (NDP Kinase 2 유전자를 도입한 산화스트레스 내성 형질전환 감자의 선발)

  • Li, Tang;Kwon, Suk-Yoon;Yun, Dae-Jin;Kwak, Sang-Soo;Lee, Haeug-Soon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.191-195
    • /
    • 2004
  • Arabidopsis NDPK2 (AtNDPK2) is a key singaling component that regulate cellular redox state and known to enhance multiple stress tolerance when over-expressed in Arabidopsis plant (Moon et al. 2003). In order to develop transgenic potato plants with enhanced tolerance to multiple stresses, we placed an AtNDPK2 cDNA under the control of a stress-inducible SWPA2 promoter or enhanced CaMV 35S promoter. Transgenic potato plants (cv. Superior and Atlantic) were generated using an Agrobacterium-mediated transformation system and selected on MS medium containing 100 mg/L kanamycin. Genomic Southern blot analysis confirmed the incorporation of AtNDPK2 cDNA into the potato genome. When potato leaf discs were treated with methyl viologen (MV) at 10 $\mu$M, transgenic plants showed higher tolerance to MV than non-transgenic or vector-transformed plants. The NDPK2 transgenic potato plants will be further used for analysis of stress-tolerance to multiple environmental stresses.

A Note on the Control of Indian Meal Moth (Lepidoptera: Pyralidae) in Flour Milling Facility by Superheating (제분 시설에서의 화랑곡나방(Lepidoptera: Pyralidae)의 고온 방제)

  • Na Ja Hyun;Ryoo Mun Il
    • Korean journal of applied entomology
    • /
    • v.44 no.1 s.138
    • /
    • pp.67-72
    • /
    • 2005
  • In a flour milling facility, control ability of superheating effect on Indian meal moth population was teated. Thirty adults, thirty larvae and 100 eggs were placed in a paper bag ($10{\times}20cm$) containing 100 g flour and were exposed to the temperature higher than $60^{\circ}C$ for longer than 3 hours. Mortality of the Indian meal moth (${\pm}standard error$) varied with the developmental stage; mortality (${\pm}standard error$) of egg, larvae and adult were in the range of $91.40{\pm}0.93{\sim}98.80{\pm}0.20\%,\;96.00{\pm}0.67{\sim}100\%$) and $100\%$, respectively. The position of paper bag caused differences in temperature and its exposure time to the moth during the experiment, consequently. The mortality of moth was significantly different among the bag position. Exposure of the paper bag to the temperature of higher than $60^{\circ}C$ for longer than 11 hours was not sufficient to kill all the eggs.

Protoplast Fusion of Saccharomyces and Kluyveromyces to Develop Thermotolerant Ethanol-Producing Yeast Strains (고온내성 에탄올 생산 효모균주의 개발을 위한 Saccharomyces와 Kluyveromyces의 원형질체 융합)

  • Kim, Min-Soo;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.80-86
    • /
    • 2000
  • To develop thermotolerant ethanol producing yeast strains, the protoplasts of Saccharomyces carlsbergensis having good fermentability at $30^{\circ}C$ and Kluyveromyces marxianus able to grow at $42^{\circ}C$ were fused. Under the optimal conditions for protoplast formation, the frequency of protoplast formation of S. carlsbergensis was 92 - 94% and that of K. marxianus was 98%. Fusion frequency between S. carlsbergensis and K. marxianus was $1.4\times10^{-6}-4.8$\times10^{-7}$. Among the 27 fusants obtained, 6 fusants were able to grow at $42^{\circ}C$. While the parental strains produced 3.2-3.4%(w/v) ethanol after 3 days from the fermentation medium containing glucose, fusants SK41-4 and SK53-22 produced 5.2%(w/v) ethanol in the same condition. The thermotolerance of SK53-22 was not high, but that of SK41-4 was quite high.

  • PDF

Use of Thermophilic Yeast for Ethanol Fermentation of Raw Starchy Materials (생전분질원료(生澱粉質原料)의 Ethanol 발효(醱酵)에 있어서 고온성효모(高溫性酵母)의 이용(利用))

  • Park, Yoon-Joong;Sohn, Cheon-Bae;Shin, Cheol-Seung
    • Applied Biological Chemistry
    • /
    • v.27 no.4
    • /
    • pp.217-224
    • /
    • 1984
  • Effect of a thermophilic yeast (strain T-71) on the ethanol fermentation of raw starchy materials was investigated. The maximum temperature of the thermophilic yeast for the growing and fermentation was a little higher than that of ordinary yeasts and their resistance to ethanol was also high. Even though the optimum temperature of the thermophilic yeast for fermenting ethanol of several raw starchy materials was different depending upon the concentration of mashing, their optimum fermentation temperature was higher than the ordinary yeasts in all cases studied, and their fermentation efficiency was good enough to use. It was also found from the study that the period of fermentation could be shortened for about one to two days by using the thermophilic yeast.

  • PDF