Protoplast Fusion of Saccharomyces and Kluyveromyces to Develop Thermotolerant Ethanol-Producing Yeast Strains

고온내성 에탄올 생산 효모균주의 개발을 위한 Saccharomyces와 Kluyveromyces의 원형질체 융합

  • Kim, Min-Soo (Department of Genetic Engineering, The University of Suwon) ;
  • Kim, Keun (The Research Center for New Bio-Materials in Agriculture, Seoul National University)
  • 김민수 (수원대학교 유전공학과) ;
  • 김근 (서울대학교 농업생물신소재 연구센타)
  • Published : 2000.04.01

Abstract

To develop thermotolerant ethanol producing yeast strains, the protoplasts of Saccharomyces carlsbergensis having good fermentability at $30^{\circ}C$ and Kluyveromyces marxianus able to grow at $42^{\circ}C$ were fused. Under the optimal conditions for protoplast formation, the frequency of protoplast formation of S. carlsbergensis was 92 - 94% and that of K. marxianus was 98%. Fusion frequency between S. carlsbergensis and K. marxianus was $1.4\times10^{-6}-4.8$\times10^{-7}$. Among the 27 fusants obtained, 6 fusants were able to grow at $42^{\circ}C$. While the parental strains produced 3.2-3.4%(w/v) ethanol after 3 days from the fermentation medium containing glucose, fusants SK41-4 and SK53-22 produced 5.2%(w/v) ethanol in the same condition. The thermotolerance of SK53-22 was not high, but that of SK41-4 was quite high.

$30^{\circ}C$에서 에탄올 발효력이 우수한 Saccharomyces carlsbergensis와 $42^{\circ}C$에서 성장력이 우수한 Kluyveromyces maxianus를 원형질체 융합을 통하여 고온에서도 발효력이 우수한 효모 균주를 개발하고자 하였다. 원형질체 융합을 위해 원형질체 형성율의 최적 조건을 조사하였는데, 두 균주 모 두 삼투안정제는 1.2M KCl, 세포벽 분해 효소의 농도와 처리 시간은 각각 200 (unit/ml)와 90분으로 동일하였고, 전처리용액으로서 EDTA와 mercaptoethanol의 농도, 그리고 최적 pH는 두 균주가 차이를 보여 S. carlsbergensis가 각각 10-20 mM/ml, $4.0\mu$l/ml, 그리고 7.0이었고, K. marxianus의 경우 20mM/ml, 2.5-4 $\mu$l/ml, 그리고 8.0이었다. 원형질체 형성을 위한 최적 조건하에서 원형질체 형성을 S. carlsbergensis의 경우 92.94%, K marxianus는 98%였으며, 두 균주의 원형질체 융합율은 $1.4\times10^{-6}-4.8$\times10^{-7}$으로 나타났다. 두 균주를 융합시킨 결과 SG배지$ 30^{\circ}C$에서 6-8일 배양 후에 27주의 융합주들을 획득하였고, 이 중에서$ 42^{\circ}C$에서 성장을 보인 융합주는 6주이었다. $42^{\circ}C$ 그리고 16%(w/v) 포도당이 함유된ㄴ 배지에서 3일 발효 후 모균주들이 3.2-3.4%(w/v)의 에탄올을 생산하였는데 비해 융합주 SK41-4와 SK53-22는 같은 조건에서 모두 5.2%(w/v)의 에탄올을 생산하였다. 고온내성에 대한 안정성을 조사한 결과, SK53-22 경우 세포 분열이 거듭됨에 따라 안정성이 감소하였으나, SK41-4는 30세대 세포분열 후 100.0%로서 안정성이 매우 높았다.

Keywords

References

  1. Appl. Environ. Microbiol v.51 Intergeneric hybrids of Saccaromyces cerevisiae and Zygosaccharo-myces fermentati obstained by protoplast fusion Alfonso P.;I.L. Calderon;T. Benitez
  2. J. Bacteriol v.137 Isolation and characterization of protoplasts from Saccharomyces rouxii Arnold W.N.;R.C. Garrison
  3. World J. Microbiol. Biotechnol. v.11 Characterization and potential industrial applications of five novel, thermotolerant, fermentative, yeast strains. Banat I.M.;R. Marchant
  4. Method of enzymatic analysis v.3 Ethanol determination with alcohol dehydrogenase and β-NAD Bernet T.;I. Gutman;H.U. Bergmeyer (ed.)
  5. Saccharomyces uvarum Biotechnol. Lett v.4 The effect of temperature on the ethanol tolerant of the yeast, Brown S.W.;S.G. Oliver
  6. Process Biochem v.16 Alcohol fermentation by yeast - the effect of environmental and other variables John R.P.;N. Pamment;P.F. Greenfield
  7. Agric. Biol. Chem v.54 Consturction of flocculent yeast cells (S. cerevisiae) by mating and protoplast fusion using a yeast cell containing the flocculation gene FLO5 Junji W.;M. Kudo;N. Nishikama
  8. FEMS Microbiol. Lett v.81 Enhanced intraspecific protoplast fusion in yeast Kavanagh K.;M. Walsh;P.A. Whittaker
  9. J. Microbiol. Biotechnol v.1 Enhancement of ethanol tolerance of lactose assimilating yeast strains by protoplast fusion Lee H.S.;H.W. Jang;Y.W. Ryu
  10. Biotechnol. Bioeng. Symp v.11 Rapid determination of yeast viability Lee S.S.;F.M. Robinson;H.Y. Wan
  11. Transact. Brit. Mycol. Soc v.67 Factors affecting protoplast release in some filamentous fungi Peberdy J.F.
  12. FEMS. Microbiol. Lett v.3 Intergeneric hybridization in yeasts through protoplast fusion Provost A.;C. Bourguignon;P. Fouriner;A.M. Ribet;H. Heslot
  13. J. Ferment. Bioeng v.81 Introduction of mitochondria into respiratory-deficient mutant of yeast and improvement of thermostability Sakanaka K.;W. Yan;M. Kishida;T. Sakai
  14. J. Inst. Brev v.75 A rapid and reducible method for obtaining yeast protoplast Schwenke J.
  15. Biotechnol. Lett v.5 Genetic construction of yeast strains for high ethanol production Seki T.;S. Myoya;S. Limtong;S. Uedono;J. Kumnuana;H. Taguchi
  16. Method in genetics; Laboratory course manual Sherman F.;G. Fink;J.B. Hicks
  17. Curr. Genet v.9 The use of mitochondrial mutant in hybridization of industrial yeast trains Spencer J.F.T.;C. Bizeau;N. Reynolds;D.M. spencer
  18. Yeast; A practical approach Yeast genetics Spencer J.F.T.;D.M. Spencer;A.R.W. Smith;I. Campbell (ed.);J.H. Duffus (ed.)
  19. Can. J. Microbiol v.27 The genetic manipulation of industrial yeast strains Stewart G.G.
  20. CRC. Crit. Rev. Bio-technol v.1 Effects of ethanol on the temperature relations of viability growth in yeast Van Uden N
  21. Experientia v.36 Formation of ethanol by bacteria;A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes Wiegel J.
  22. Mol. Gen. Gent v.186 Protoplast fusion in the yeast Schwanniomyces alluvius Wilson J.;J. George;G. Khachatourians;M. Ingledew
  23. Agric. Biol. Chem v.39 Preparation of protoplasts of hydrocar-bonutilizing yeast cells and their respiratory activities Yamamura M.