• 제목/요약/키워드: 고압가스배관

Search Result 65, Processing Time 0.027 seconds

An Assessment Pipe Damage Probability of High Pressure Underground Pipeline in Industrial Estate (산업단지 고압매설배관의 손상확률 평가)

  • Kim, jin-jun;Rhie, Kwang-Won;Choi, hun-ung;Choi, ji-hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.9-16
    • /
    • 2019
  • The frequency of major accidents which has probability of occurrence at the high pressure underground pipeline of industrial estate such an Ulsan, Yeo-ju by the other construction such as an excavation work will be compared to city gas underground pipeline to derive the basic event by the FTA and present. Also, Observe and analyze the pipe damage impact factor such as an excavation frequency, patrol cycle. As a result, It contributes to the safety improvement of high pressure gas buried pipeline due to obtain importance and sensitivity of the pipe damge impact factors.

A Development Inspection Management Operation Model of High Pressure Underground Pipeline in Industrial estate (산업단지 고압매설배관의 점검 관리 운영 모델 개발)

  • Choi, Ji-Hun;Kim, Jin-Jun;Rhie, Kwang-Won;Kim, Tae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2019
  • The high pressure underground pipelines of industrial states such as Ulsan, Yeosu consist with not only the pipelines for the utility support such as Raw material of petrochemical industry and steam, but also high pressure pipelines of toxic, flammable gas intricately like a web. Therefore, in this study, based on in-depth comparison analysis of industrial estate pipelines, and underground city gas pipelines' safety management status, excavation frequency, excavation depth, patrol period which are pipe damage impact factor by the other construction are analyzed. And, as a result, risk changes and correlations due to risk reduction strategy of the other construction are compared to be presented the safety inspection operation model for the high pressure underground pipelines of industrial estates.

Comparative Analysis on the Causes and Frequency of Recent Gas Pipelines Accidents in Major Overseas Countries (해외 주요국에서의 최근 가스배관 사고의 원인과 빈도의 비교 분석)

  • Kim, Dae-Woong;Bae, Kyung-Oh;Shin, Hyung-Seop;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.53-64
    • /
    • 2018
  • Natural gas is an explosive fluid and can cause severe human/material damage when buried high-pressure pipeline is failure, and there have been reported cases of considerable human life damage to actual buried pipeline failure. In domestic cases, the length and duration of pipeline operating are short due to rapid growth. Therefore, it is a fact that the establishment of effective accident data is insufficient for the cause of the accident. In order to systematically construct an accident database, the operation history of natural gas pipeline is longer than domestic, and the cause and frequency analysis of recent natural gas pipeline related accidents occurred in overseas major countries with a long pipeline network was conducted. Then, after grasping the trend of occurrence frequency by incident cause, we tried to establish the foundation for securing the stability of the domestic high-pressure gas transport pipeline network.

A Study on the Safety Improvement of Buried Pipeline Using Scoring Model (Scoring Model을 이용한 매설배관 안전성 개선에 관한 연구)

  • Son, Myoung-Duck;Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.175-185
    • /
    • 2017
  • As the gas is manufactured, handled and used more often due to the continuous increase of gas, the related facility gets expanded and more complex causing small and big accident which causes economic loss including damage for humans and materials. The gas pipeline, the most common gas facility, has the biggest risk of accidents. Especially in the urban area and densely populated areas, the accident due to the high pressure pipeline may cause even more serious damages. To prevent the accident caused by the buried pipeline, it is required for the relevant authorities to evaluate the damage and risk of the whole pipeline system effectively. A risk is usually defined as a possibility or probability of an undesired event happening, and there is always a risk even when the probability of failure is set low once the pipeline is installed or under operation. It is reported that the accident caused by the failure of the pipeline rarely happens, however, it is important to minimize the rate of accidents by analyzing the reason of failure as it could cause a huge damage of humans and property. Therefore, the paper rated the risk of pipelines with quantitative numbers using the qualitative risk analysis method of the Scoring Model. It is assumed that the result could be effectively used for practical maintenance and management of pipelines securing the safety of the pipes.

The Fatigue Life Prediction of Defect in Pipeline Weldment (배관 용접부에 존재하는 결함의 피로수명 평가)

  • 김영표;김우식
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.460-465
    • /
    • 2001
  • 본고에서 피로균열성장에 대한 일반사항과 배관용접부 결함의 피로수명평가 방안에 대해서 알아보았다. 고압의 가연성 가스나 액체를 수송하는 배관이 피로에 의해 파괴되는 경우에는 엄청난 재산과 인적 손실을 발생시킬 수 있다. 따라서 배관운용회사들은 배관의 안정적인 운용을 위하여 다양한 환경에 노출되어있는 배관의 피로특성을 정확히 평가해야 한다.

  • PDF

가스시공 실무-소형저장탱크용 고압호스의 성능인증 기준 해설

  • Kim, Wan-Jin
    • 월간 기계설비
    • /
    • no.5 s.202
    • /
    • pp.64-69
    • /
    • 2007
  • 소형저장탱크의 보급으로 벌크로리 공급시스템이 확대되고 체계적인 수요관리가 가능해짐에 따라 LP가스산업의 발전에 많은 기여를 할 것으로 기대된다. 또한 500kg미만 소형저장탱크의 고압배관시공에 고압호스가 가능해짐에 따라 2006년 11월 소형저장탱크용 고압호스 성능인증기준이 제정되게 되었다. 새로 제정된 소형저장탱크용 고압호스의 성능인증 기준을 기술하여 고압호스제조업체, 소형저장탱크 시공업체 등의 관련업체에 참고자료가 되기를 바란다.

  • PDF

A Study on Minimum Separation Distance for Aboveground High-pressure Natural Gas Pipelines (지상 고압 천연가스 배관의 최소 이격거리 기준에 관한 연구)

  • Lee, Jin-Han;Jo, Young-Do
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.225-231
    • /
    • 2019
  • In Korea, the minimum separation distance between aboveground high-pressure natural gas pipeline and buildings is regulated by Korea gas safety (KGS) code. In this paper, The technical backgrounds for the revision of the KGS code related to the minimum separation distance was presented. A consequence-based approach was adopted to determine the minimum separation distance by a reasonable accident scenario, which was a jet fire caused by the rupture of one inch branch line attached the gas pipeline. Where, the higher thermal radiation flux threshold was selected for workers in industrial area than for people in non-industrial area, because the workers in industrial area were able to escape in a shorter time than the people in public. As result of consequence analysis for the accident scenario, we suggested the KGS code revision that the minimum separation distances between high-pressure natural gas pipeline installed above ground and buildings should be 30 meter in non-industrial area and 15 meter in industrial area. The revised code was accepted by the committee of the KGS code and now in effect.

A Study on the Stability Improvement of Oxygen Handling Equipment to Prevent Fire and Explosion Accidents in High-Pressure Oxygen Transport Piping (고압산소 이송배관시 화재·폭발 사고 방지를 위한 산소 취급 설비 안정성 향상에 관한 연구)

  • Sang Kyu Oh;Sang Ryung Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.84-90
    • /
    • 2023
  • Oxygen, which is always present in the atmosphere among the three elements of combustion, can cause fires and explosions with only a very small amount of combustibles under high-pressure oxygen conditions. The burning rate is also significant, and can rise to temperatures that can have a direct impact, such as melting process equipment and piping in an instant. Therefore, accidents that occur under high pressure oxygen often cause more damage than other accidents. Recently, while operating a valve installed in an oxygen supply pipe, rapid combustion and rupture occurred inside, resulting in human casualties due to an explosion. In the case of an old carbon steel pipe, particles generated during operation become combustible and can cause accidents. . In particular, since oxygen facilities are facilities licensed under the High Pressure Gas Safety Management Actand there are no restrictions under the Occupational Safety and Health Act, accumulating these standards is of utmost importance. Therefore, in this study, based on accident cases and overseas standards, methods for improving safety when handling hyperbaric oxygen are reviewed.

Numerical investigation on reduction of valve flow noise in high pressure gas pipe using perforated plates (다공판을 이용한 고압 가스 배관 내 밸브 유동 소음 저감에 대한 수치적 고찰)

  • Kim, Gyunam;Ku, Garam;Cheong, Cheolung;Kang, Woong;Kim, Kuksu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • In this study, a numerical methodology is proposed for evaluating valve flow noise in a pipe conveying high pressure gas, and the effects of perforated plates on reduction of such valve flow noise are quantitatively analyzed. First, high-accurate unsteady compressible Large Eddy Simulation techniques are utilized to predict flow and flow noise by a valve in a high-pressure pipe. The validity of the numerical result is confirmed by comparing the predicted wall pressure spectrum with the measured one. Next, the acoustic power of downstream-propagating acoustic waves due to the valve flow is analyzed using an acoustic power formula for acoustic waves propagating on mean flow in a pipe. Based on the analysis results, perforated plates are designed and installed downstream of the valve to suppress the valve flow noise and the acoustic power of downstream-going acoustic waves is predicted by using the same numerical procedure. The reduction by 9.5 dB is confirmed by comparing the predicted result with that of the existing system. Based on these results, the current numerical methodology is expected to be used to reduce valve flow noise in an existing system as well as in a design stage.

A Study on the Procedure of Quantitative Risk Assessment for High Pressure Natural Gas Pipeline (도시가스 고압배관의 정량적 위험평가 절차에 관한 연구)

  • Lee, Kyung-Sik;Jo, Young-Do;Ryou, Young-Don;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.25-31
    • /
    • 2008
  • Recently risk management based on a quantitative assessment is considered to improve the level of safety in Korea. This paper focuses on the procedure of the quantitative risk assessment for natural gas pipelines. For that purpose, the methods to estimate failure frequency based on failure causes from European Gas Pipeline Incident Data Group and BG Transco, to analyze consequence caused by fire, and to calculate individual risk and societal risk have been proposed systematically in this paper. Risk criteria of individual risk and societal risk have been proposed by considering the environment of pipeline route in Korea. The proposed procedure of quantitative risk assessment may be useful for risk management during the planning and building stages of a new pipeline, and modification of buried pipeline.

  • PDF