• Title/Summary/Keyword: 고속RPM

Search Result 199, Processing Time 0.041 seconds

The Effects of Screw Speeds and Moisture Contents on Soy Protein under Texturization Using a Single-screw Extruder (압출성형기의 스크류 회전속도와 원료수분함량이 대두단백질의 조직화에 미치는 영향)

  • Han, Ouk;Lee, Sang-Hyo;Lee, Hyun-Yu;Oh, Sang-Lyong;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.772-779
    • /
    • 1989
  • The effects of screw speeds and moisture contents on the physical properties of texturized extrudate from isolated soy protein were examined by using a single-screw extruder. The screw speeds and moisture contents tested were in the range of 122-334 rpm and 20-35%, respectively, and die temperature were $90-145^{\circ}C$. The texturization characteristics such as nitrogen solubility index, integrity index, chewiness, density, rehydration ratio, and lightness after rehydration were appeared to be influenced by screw speed and moisture content. As the screw speed increased and moisture content decreased, die temperature, nitrogen solubility index, integrity index, lightness before and after rehydration were increased, while chewiness, density, water content of final extrudate wee decreased. The rehydration rate was changed drastically at the feed moisture content of 30% in particular. As the moisture content decreased, the air cell size became large and its number was increased. The effects of interaction between screw speed and moisture content of raw materials on the extrudate characteristics were tested by the analysis of variance.

  • PDF

Study on measuring the low torque on an air tool operating at 100,000 RPM class (100,000 RPM급으로 회전하는 에어공구에서의 저토오크 측정에 관한연구)

  • Kim, Eun-Jong;Cho, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2018-2023
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM at the unloaded state with the low torque. An experimental apparatus is developed as the power absorption type dynamometer. Inlet static pressure, flow rate, RPM and force are measured simultaneously. Torque, output power and specific output power are obtained. Those experimental results are compared with the experimental results obtained on a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000RPM. In order to use the commercial dynamometer, a reduction gear is applied to the shaft of dynamometer. Torque and power obtained on the commercial dynamometer show 50% lower than those obtained on a power absorption type dynamometer, because the inertia force is added to the air tool rotor for the braking system. Moreover, the starting RPM on the commercial dynamometer is less than 40,000RPM. From the compared results, they show that the power absorption type dynamometer should be applied for measuring the performance of an air tool operating at low torque and high RPM.

  • PDF

A Study on the Decrease Fuel Consumption of SCV in a High Speed Small SI Engine (소형 고속 SI 엔진에서 SCV의 연비저감 효과에 관한 연구)

  • Lee, Seung-Jin;Ryu, Jeong-In;Jeong, Dong-Soo
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.180-186
    • /
    • 2005
  • As an engine has a wide range of RPM $(3000\~12000\;RPM)$, variable control system is necessary in order to increase engine performance. SCV has been frequently referred to as a possible way to increase engine performance at low RPM. The purpose of this study is to investigate on the influence of SCV, specially at the range of lower revolution, in a high-speed small engine. Experiments were conducted on 4 Valves SOHC/air-cooling single cylinder engine and SCV shapes have been tested fur swirl intensity, the performance of power, fuel consumption and emission. As a result, we find to use SCV range be below 5000 RPM which fuel consumption decreased $9\%$.

Machine Tool Technology;The Present And The Future(3) (공작기계기술의 현재와 미래(3))

  • 강철희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.5-12
    • /
    • 1995
  • 전술한 바와 같이 공작기계 기술은 고정밀화, 고속화 고성능화의 추세로 발전해 나가고 있다. 고속 절삭이라고 하면 직감적으로 주축이 수만 rpm으로 회전하면서 어떤 재료를 가공할 수 있는 MC의 고속 주축을 생각하게 된다. 그러나, 이와 같은 고속절삭은 A1이나 Plastic등 재료를 가공 하는데 국한되고 있으며, 철계금속의 고속절삭이란 정의는 절삭속도를 수백m/min의 초고속 가공 뿐만 아니라 '가공시간의 단축'도 고속 가공의 정의에 포함시켜서 이해해야되며 가공물의 소재가 일반 강철, 열처리된 강철, Ceramics재료, 난삭재료 등의 고속절삭을 위해 개발된 Tooling기술에 대한 검토 필요성이 급속히 증가하고 있다.

  • PDF

Thermal Decomposition and Mechanical Properties of Polycarbonate/ABS Blends Prepared by High Shear Rate Processing (고속전단에 의한 폴리카보네이트/ABS 블렌드의 열분해 및 기계적 특성 연구)

  • Yoo, Jae Jung;Yong, Da Kyoung;Lee, Han Ki;Kim, Dae Sik;Lee, Hyung Il;Kim, Sun Hong;Lee, Kee Yoon;Lee, Seung Goo
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.471-476
    • /
    • 2014
  • Polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blends were prepared using a high shear extruder to investigate their thermal decomposition and mechanical properties with shear rate and shear time. In this experiment, high shear rate, from 1000 to 3000 rpm, in blending process was applied for 10 to 40 sec, respectively. At high shear rate over than 2000 rpm, the initial decomposition temperature was dropped significantly compared to a compounded sample because of thermal decomposition of the blend by high shear. Consequently, high shear processing gave an important effect on the mechanical and thermal properties of the PC/ABS blend. In particular, elongation of the blend decreased significantly with shear rate.

Development of High Speed mid-Mower for Tractor (II) (트랙터용 고속 미드 모어 개발(II))

  • Kim, Sam-Hee;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • In recent years, work to improve the power of a tractor has been in development. This study, using the mid-PTO power of a compact tractor, attempted to develop a high-speed mid-mower by setting the rotation to more than 3,000 RPM designed/manufactured major components of the high speed mid-mower. The performance of high-speed mid-mower was evaluated by the precision of straight bevel gears, and durability, the noise of the gearbox, the gearbox internal temperature, the maximum rotation speed of the mid-mowers, and the grass cutting test. Through the performance test results, the maximum number of revolutions of the mid-mower was measured over 3,000RPM, the gearbox noise and gearbox internal temperature satisfied the performance requirements of a high speed mid-mower.

Development of Micro Tool using High Speed Etching Process (고속 회전에칭을 이용한 미세공구의 개발)

  • 김성헌;박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.959-962
    • /
    • 2000
  • In this study, the micro shaft was fabricated by high speed etching process. The integration of the kinetic energy of circumference and the effect of etching takes less time to fabricate the micro shaft than any other conventional methods. First, the end part of the rod(SKD11) was dipped in chemical solution(FeCl$_3$) and the rod rotated at high speed(3500-10000rpm). Experimental setup was simply composed of high speed motor. chemical solution and $\Phi$ 1 mm rod. The main factors of diameter control are chemical concentration, reaction time and rpm. has a result. the diameter of the dipped rod was decreased by 200${\mu}{\textrm}{m}$ by high speed rotation and its shape and surface was good. From this experiment, we found the possibility to manufacture micro shaft without very expensive equipment.

  • PDF

3-죠오 척의 동적 파악력에 관한 연구

  • 박태원;제정신;도도산결
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.67-71
    • /
    • 1991
  • 최근 기계가공의 고능률화와 고정도화를 위하여 공작기계의 고속화의 요구가 해가 갈수록 높아지고 있다. 특히 터어닝센타(Turning Center)에 있어서도 주축회전수가 1만 rpm 정도의 고속화, 고출력화와 함께 공구의 고속, 중점삭을 향한 성능향상이 진전되어가고 있으나, 기계-공작물-공구의 절삭 시스템 중에서 기계와 공작물을 연결하는 인터페이스로서, 고속화된 척의 개발이 늦어져서 기계의 고속화를 저해하는 하나의 요인으로 지적되어 지고 있다.(중략)

  • PDF

Static and Dynamic Analysis and Optimization Design of 40,000-rpm High-Speed Spindle for Machine Tools (공작기계용 40,000rpm 고속주축의 정·동적 해석과 최적설계에 관한 연구)

  • Kim, Dong Hyeon;Lee, Choon Man;Choi, Hyun Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.105-111
    • /
    • 2013
  • The spindle is the main component in machine tools. The static and dynamic characteristics of the spindle directly affect the machining accuracy of workpieces. The characteristics of the spindle depend on the shaft size, bearing span, built-in motor location, and so on. Therefore, the appropriate selection of these parameters is important to improve the spindle characteristics. This paper presents the analysis of the static and dynamic characteristics and optimization design of a 40,000-rpm high-speed spindle. Statistical analysis for optimization and finite element analysis were performed. This study uses the response surface method to optimize the objective function and design factors. The targets are the natural frequency and displacement. The design factors are the shaft length, shaft diameter, bearing span, and motor location. The optimized design provides better results than the initial model, and these results are expected to improve the static and dynamic characteristics of the spindle.