• Title/Summary/Keyword: 고속 탐색

Search Result 472, Processing Time 0.029 seconds

Direction-Oriented Fast Full Search Algorithm at the Divided Search Range (세분화된 탐색 범위에서의 방향 지향적 전영역 고속 탐색 알고리즘)

  • Lim, Dong-Young;Park, Sang-Jun;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.12 no.3
    • /
    • pp.278-288
    • /
    • 2007
  • We propose the fast full search algorithm that reduces the computational load of the block matching algorithm which is used for a motion estimation in the video coding. Since the conventional spiral search method starts searching at the center of the search window and then moves search point to estimate the motion vector pixel by pixel, it is good for the slow motion picture. However we proposed the efficient motion estimation method which is good for the fast and slow motion picture. Firstly, when finding the initial threshold value, we use the expanded predictor that can approximately calculate minimum threshold value. The proposed algorithm estimates the motion in the new search order after partitioning the search window and adapt the directional search order in the re-divided search window. At the result, we can check that the proposed algorithm reduces the computational load 94% in average compared to the conventional spiral full search algorithm without any loss of image quality.

An Adaptive Search Range Decision Algorithm for Fast Motion Estimation using Local Statistics of Neighboring Blocks (고속 움직임 추정을 위한 인접 블록 국부 통계 기반의 적응 탐색 영역 결정 방식)

  • 김지희;김철우;김후종;홍민철
    • Journal of Broadcast Engineering
    • /
    • v.7 no.4
    • /
    • pp.310-316
    • /
    • 2002
  • In this paper, we propose an adaptive search range decision algorithm for fast motion estimation of video coding. Block matching algorithm for motion vector estimation that improves coding efficiency by reduction of temporal redundancy has trade-off problem between the motion vector accuracy and the complexity. The proposed algorithm playing as a pre-processing of fast motion estimation adaptively determines the motion search range by the local statistics of neighboring motion vectors. resulting in dramatic reduction of the computational cost without the loss of coding efficiency. Experimental results show the capability of the proposed algorithm.

Fast Block Motion Estimation Using the Characteristics of the Motion in Search Region (탐색 영역에서의 움직임 특성을 이용한 고속 블록 움직임 추정)

  • 최정현;박대규;정태연;이경환;이법기;김덕규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.167-174
    • /
    • 2000
  • The three-step search(TSS) algorithm, a simple and gradual motion estimation algorithm, has been widely used in some low bit-rate video compression. We propose a new fast block motion estimation algorithm using the characteristics of motion in search region. Most of motion vectors exist in the center region of search area, so the notion in that region is examined more closely than TSS in this paper. Also in a search step, motion vector is estimated in the local area which is not overlapped with the search area in previous step, considering the all possible direction of motion. Therefore, we get the better motion estimation and reduce computational time in compared with the conventional methods.

  • PDF

Fast VQ Codebook Search Algorithms Using Index Table (인덱스 테이블을 이용한 고속 VQ 코드북 탐색 알고리즘)

  • Hwang, Jae-Ho;Kwak, Yoon-Sik;Hong, Choong-Seon;Lee, Dae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3272-3279
    • /
    • 2000
  • In this paper, we propose two fast VQ coclebook search algorithms efficient to the Wavelet/ VQ coding schemes. It is well known that the probability having large values in wavelet coefficient blocks is very low. In order to apply this property to codebook search, the index tables of the reordered codebook in each wavelet subband ae used. The exil condition in PDE can be satisfied in an earlystage by comparing the large coefficients of the codeword with their corresponding elements of input vector using the index tbles. As a result, search time can be reduced.

  • PDF

A method of Fast motion estimation using Motion characteristics of Macro-blocks in Search range (탐색 영역내 매크로 블록 움직임 특성을 이용한 고속 움직임 예측 방법)

  • Jeong, Yong-Jae;Moon, Kwang-Seok;Kim, Jong-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.157-158
    • /
    • 2009
  • 본 논문에서는 움직임 추정을 위한 탐색 영역내의 스캔 방법을 움직임 벡터가 나올 확률에 근거하여 가변적으로 적용하여 불필요한 후보 블록을 제거하는 PDE(patial distortion elimination) 기반의 고속 블록 매칭 알고리즘을 제안한다. 제안한 방법은 기존의 방법보다 불필요한 계수를 효율적으로 제거하기 위하여 탐색 영역 안에서 움직임 벡터가 존재 할 확률이 가장 높은 영역은 전영역 탐색을 적용하고, 움직임 벡터가 존재할 확률이 낮은 영역은 한 픽셀 건너 뛰어서 블록 정합하여 계산 비용을 효율적으로 감소시켯다. 제안한 알고리즘은 극히 낮은 화질 저하를 가지며, 기존의 H.264에서 사용되고 있는 전역 탐색 알고리즘에 비해 P프레임의 경우 85% 이상의 계산 비용 감소가 있어 H.264를 이용하는 비디오 압축 응용 분야에 유용하게 사용될 수 있을 것이다.

Early Termination Algorithm of Prediction Unit (PU) Search for Fast HEVC Encoding (HEVC 고속 부호화를 위한 PU 탐색 조기 종료 기법)

  • Kim, Jae-Wook;Kim, Dong-Hyun;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.172-173
    • /
    • 2013
  • 최근 표준화가 완료된 HEVO(High Efficiency Video Coding)에서는 계층적 구조를 갖는 가변블록의 크기를 사용하고 재귀적으로 부호화를 수행사여, 최적의 부호화단위(CU: Coding Unit) 분할 구조와 예측단위(PU: Prediction Unit)를 결정함으로써 높은 부호화 효율을 얻을 수 있는 반면 부호화 복잡도가 증가하는 문제가 있다. 본 논문에서는 부호화기의 복잡도를 감소시키기 위한 고속 부호화 알고리즘으로 고속 모드 결정 기법을 제안한다. 제안기법은 상위 깊이(CU: Coding Unit)의 최적 모드와 부호화 율-왜곡 비용을 이용해서 현재 깊이 CU에서의 특정 모드의 율-왜곡 비용 계산을 생략함으로써 PU 탐색을 조기 종료한다. 즉, 상위 깊이 CU의 조건에 따라 화면간 예측 모드의 일부 또는 화면내 예측을 수행하지 않는다. 실험결과 제안기법은 HM 12.0대비 0.2%의 비트 증가에 22.9%의 계산시간 감소 효과를 얻을 수 있음을 확인하였다.

  • PDF

Motion Direction Oriented Fast Block Matching Algorithm (움직임 방향 지향적인 고속 블록정합 알고리즘)

  • Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2007-2012
    • /
    • 2011
  • To reduce huge computation in the block matching, this paper proposes a fast block matching algorithm which limits search points in the search area. On the basis of two facts that most motion vectors are located in central part of search area and matching error is monotonic decreasing toward the best similar block, the proposed algorithm moves a matching pattern between steps by the one pixel, predicts the motion direction for the best similar block from similar blocks decided in previous steps, and limits movements of search points to ${\pm}45^{\circ}C$ on it. As a result, it could remove the needless search points and reduce the block matching computation. In comparison with the conventional similar algorithms, the proposed algorithm caused the trivial image degradation in images with fast motion but kept the equivalent image quality in images with normal motion, and it, meanwhile, reduced from about 20% to over 67% of the their block matching computation.

A New Fast Training Algorithm for Vector Quantizer Design (벡터양자화기의 코드북을 구하는 새로운 고속 학습 알고리듬)

  • Lee, Dae-Ryong;Baek, Seong-Joon;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 1996
  • In this paper we propose a new fast codebook training algorithm for reducing the searching time of LBG algorithm. For each training data, the proposed algorithm stores the indexes of codewords that are close to that training data in the first iteration. It reduces computation time by searching only those codewords, the indexes of which are stored for each training data. Compared to one of the previous fast training algorithm, FSLBG, it obtains a better codebook with less exccution time. In our experiment, the performance of the codebook generated by the proposed algorithm in terms of peak signal-to-noise ratio(TSNR) is very close to that of LBG algorithm. However, the codewords to be searched for each training data of the proposed algorithm is only about 6%, for a codebook size of 256 and 1.6%, for a codebook size of 1.24, of LBG algorithm.

  • PDF

Motion-based Fast Fractional Motion Estimation Scheme for H.264/AVC (움직임 예측을 이용한 고속 부화소 움직임 추정기)

  • Lee, Kwang-Woo;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.74-79
    • /
    • 2008
  • In an H.264/AVC video encoder, the motion estimation at fractional pixel accuracy improves a coding efficiency and image quality. However, it requires additional computation overheads for fractional search and interpolation, and thus, reducing the computation complexity of fractional search becomes more important. This paper proposes fast fractional search algorithms by combining the SASR(Simplified Adaptive Search Range) and the MSDSP(Mixed Small Diamond Search Pattern) with the predicted fractional motion vector. Compared with the full search and the prediction-based directional fractional pixel search, the proposed algorithms can reduce up to 93.2% and 81% of fractional search points, respectively with the maximum PSNR lost less than 0.04dB. Therefore, the proposed fast search algorithms are quite suitable for mobile applications requiring low power and complexity.

Fast Motion Estimation Technique using Efficient Prediction of Motion Vectors (움직임 벡터의 효율적 예측을 이용한 고속 움직임 추정 기법)

  • Kim, Jongho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.945-949
    • /
    • 2009
  • This paper proposes an enhanced motion estimation that is one of core parts affecting the coding performance and visual quality in video coding. Although the full search technique, which is the most basic method of the motion estimation, presents the best visual quality, its computational complexity is great, since the search procedures to find the best matched block with each block in the current frame are carried out for all points inside the search area. Thus, various fast algorithms to reduce the computational complexity and maintain good visual quality have been proposed. The PMVFAST adopted the MPEG-4 visual standard produces the visual quality near that by the full search technique with the reduced computational complexity. In this paper, we propose a new motion vector prediction method using median processing. The proposed method reduces the computational complexity for the motion estimation significantly. Experimental results show that the proposed algorithm is faster than the PMVFAST and better than the full search in terms of search speed and average PSNR, respectively.

  • PDF