• Title/Summary/Keyword: 고속푸리에변환

Search Result 130, Processing Time 0.026 seconds

The Study on Scattered Far-Field Analysis of Ultrasonic SH-Wave Using Boundary Element Method (경계요소법을 이용한 SH형 초음파 원거리 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.333-339
    • /
    • 1999
  • It is well recognized that ultrasonic technique is one of the most common and reliable nondestructive evaluation techniques for quantitative estimation of defects in structures. For the quantitative and accurate estimation of internal defects. the characteristics of scattered ultrasonic wavefields must be understood. In this study. the scattered near-field and far-field due to a circular cavity embedded in infinite media subjected to incident SH-waves were calculated by the boundary element method. The frequency response of the scattered ultrasonic far-field was transformed into the time-domain signal by obtaining its inverse Fourier transform. It was found that the amplitude of time-domain signal decreases and its time delay increases as the distance between the detecting point of ultrasonic scattered field and the center of internal cavity increases.

  • PDF

A Study on the Anomaly Prediction System of Drone Using Big Data (빅데이터를 활용한 드론의 이상 예측시스템 연구)

  • Lee, Yang-Kyoo;Hong, Jun-Ki;Hong, Sung-Chan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.27-37
    • /
    • 2020
  • Recently, big data is rapidly emerging as a core technology in the 4th industrial revolution. Further, the utilization and the demand of drones are continuously increasing with the development of the 4th industrial revolution. However, as the drones usage increases, the risk of drones falling increases. Drones always have a risk of being able to fall easily even with small problems due to its simple structure. In this paper, in order to predict the risk of drone fall and to prevent the fall, ESC (Electronic Speed Control) is attached integrally with the drone's driving motor and the acceleration sensor is stored to collect the vibration data in real time. By processing and monitoring the data in real time and analyzing the data through big data obtained in such a situation using a Fast Fourier Transform (FFT) algorithm, we proposed a prediction system that minimizes the risk of drone fall by analyzing big data collected from drones.

A Fast Partial Frequency Spectrum Computation Method for the Efficient Frequency-Domain Beamformer (효율적인 주파수 영역 빔형성기 구현을 위한 국부 스펙트럼 고속 연산 기법)

  • Ha, Chang-Eup;Kim, Wan-Jin;Lee, Dong-Hun;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.160-168
    • /
    • 2011
  • A Frequency domain beamforming technique is widely used in sonar systems with a large number of beams and sensors. In the battlefield environment requiring real-time signal processing, it is needed to optimize the computational complexity of the spectrum computation to implement an efficient and fast frequency domain beamformer. So, in this paper, we proposed the pruned-GSFFT (pruned generalized sliding fast Fourier transform) as a new spectrum computation method. The proposed method help to reduce the computational complexity of the real-time partial spectrum computation by eliminating the redundancy between consecutive input samples and skipping the regardless frequency bands. Also the characteristics of the proposed pruned-GSFFT method and its computational complexity are compared to those of previous FFT algorithms.

Energy-Efficient and Parameterized Designs for Fast Fourier Transform on FPGAs (FPGA에서 FFT(Fast Fourier Transform)를 구현하기 위한 에너지 효율적이고 변수화 된 설계)

  • Jang Ju-Wook;Han Woo-Jin;Choi Seon-Il;Govindu Gokul;Prasanna Viktor K.
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.171-176
    • /
    • 2006
  • In this paper, we develop energy efficient designs for the Fast Fourier Transform (FFT) on FPGAs. Architectures for FFT on FPGAs are designed by investigating and applying techniques for minimizing the energy dissipation. Architectural parmeters such as degrees of vertical and horizontal parallelism are identified and a design choices. We determine design trade-offs using high-level performance estimation to obtain energy-efficient designs. We implemented a set storage types as parameters, on Xilinx Vertex-II FPGA to verify the estimates. Our designs dissipate 57% to 78% less energy than the optimized designs from the Xilinx library. In terms of a comprehensive metric such as EAT (Energy-Area-Time), out designs offer performance improvements of 3-13x over the Xilinx designs.

Establishment of Testing Method for Abutment Scour Stability by Real-scale Model Test (실대형 교각 실험을 통한 교각 세굴안정성 평가 실험 기법 정립)

  • Lee, Myungjae;Yoo, Mintaek;Kim, Kihyun;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.5-14
    • /
    • 2019
  • In this study, a prototype abutment was constructed to establish a safety assessment technique of pier and a series of non-destructive tests using impact load. The surcharge load was loaded from 0 tonf to 2.5 tonf on the prototype abutment, and maximum surcharge load was up to 25 tonf. To analyze the behavior of the piers according to the direction of impact, a total of three types of analysis were performed: the direction of the pier, the direction perpendicular to the pier, and the outer direction of the pier. The height of the impact was also tested at each top and bottom. The measuring instrument used an accelerometer to measure the acceleration response when impacted. Based on the series of experimental results, specific values were calculated according to the direction of an impact and the surcharge load using the Fast Fourier Transform (FFT). In addition, the phase difference was used to analyze the pier from the primary 1st mode to the 4th mode.

Two-dimensional OCDMA Encoder/Decoder Composed of Double Ring Add/Drop Filters and All-pass Delay Filters (이중 링 Add/Drop 필터와 All-pass 지연 필터로 구성된 이차원 OCDMA 인코더/디코더)

  • Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.3
    • /
    • pp.106-112
    • /
    • 2022
  • A two-dimensional optical code division multiple access (OCDMA) encoder/decoder, which is composed of add/drop filters and all-pass filters for delay operation, is proposed. An example design is presented, and its feasibility is illustrated through numerical simulations. The chip area of the proposed OCDMA encoder/decoder could be about one-third that of a previous OCDMA device employing delay waveguides. Its performance is numerically investigated using the transfer-matrix method combined with the fast Fourier transform. The autocorrelation peak level over the maximum cross-correlation level for incorrect wavelength hopping and spectral phase code combinations is greater than 3 at the center of the correctly decoded pulse, which assures a bit error rate lower than 10-3, corresponding to the forward error-correction limit.

Performance analysis of joint equalizer and phase-locked loop in underwater acoustic communications (수중 음향통신에서 위상고정루프와 결합된 등화기의 성능분석)

  • Kim, Seunghwan;Kim, In Soo;Do, Dae-Won;Ko, Seokjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.166-173
    • /
    • 2022
  • In this paper, the performance of joint equalizer and phase-locked loop in underwater communications is analyzed. In the channel where the Doppler frequency exists, it is difficult to recover the transmitted data only by the equalizer. To compensate for the Doppler frequency, the phase-locked loop is used. For removing the time-varying multipath and the Doppler frequency simultaneously, the equalizer and the phase-locked loop operate jointly. Also, if the initial Doppler frequency error obtained by Fast Fourier Transform (FFT) is compensated, the convergence speed of the joint equalizer and phase-locked loop can be improved. To verify the performance, lake and sea experiments were conducted. As a result, it was showed that the joint equalizer and phase-locked loop converges sufficiently in the preamble (known data) period regardless of whether the Doppler frequency is compensated or not. And, the bit error in random data period is not occurred. However, we can increase the convergence speed of the equalizer more than twice through the compensation of Doppler frequency.

A Development of Real-time Vibration Monitoring and Analysis System Linked to the Integrated Management System of Ministry of Public Safety and Security (국민안전처 통합관리시스템 연계 가능한 시설물 진동 감지 및 분석 시스템 개발)

  • Lim, Ji-Hoon;Jung, Jin-Woo;Moon, Dae-Joong;Choi, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.130-139
    • /
    • 2016
  • A frequency of earthquake occurrence in the Republic of Korea is increasing over the past few decades. In this situation, an importance of earthquake prevention comes to the fore because the earthquake does damage to structures and causes severe damage of human life. For the earthquake prevention, a real-time vibration measurement for structures is important. As an example, the United States of America and Japan have already been monitoring real-time earthquake acceleration for the important structures and the measured acceleration data has been managed by forming database. This database could be used for revising the seismic design specifications or predicting the damage caused by earthquake. In Korea, Earthquake Recovery Plans Act and Enforcement Regulations are revised and declared lately. Ministry of Public Safety and Security is constructing a integrated management system for the measured earthquake acceleration data. The purpose of this research is to develop a real-time vibration monitoring and analysis system for structures which links to the integrated management system. The developed system contains not only a monitoring function to show real-time acceleration data but also an analysis system to perform fast fourier transform, to obtain natural frequency and earthquake magnitude, to show response spectrum and power spectrum, and to evaluate structural health. Additionally, this system is designed to be able to link to the integrated management system of Ministry of Public Safety and Security. It is concluded that the developed system can be useful to build a safety management network, minimize maintenance cost of structures, and prevention of the structural damage due to earthquake.

Ultrasonic Pulses Characteristics in Lightweight Fine Aggregate Concrete under Various Load Histories (하중 이력에 따른 경량 잔골재 콘크리트의 초음파 특성)

  • Yoo, Kyung-Suk;Kim, Jee-Sang;Kim, Ik-Beam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.209-216
    • /
    • 2014
  • One of the widely used NDT(Non-destructive techniques) is the ultrasonic pulse velocity (USPV) method, which determines the travel time of the ultrasonic pulse through the tested materials and most studies were focused on the results expressed in time domain. However, the signal of ultrasonic pulse in time domain can be transformed into frequency domain, through Fast fourier transform(FFT) to give more useful informations. This paper shows a comparison of changes in the pulse velocity and frequency domain signals of concrete for various load histories using lightweight fine aggregates. The strength prediction equation for normal concrete using USPV cannot be used to estimate lightweight fine aggregate concrete strength. The signals in frequency domain of ultrasonic pulse of lightweight fine aggregate concrete does not show any significant difference comparing with those of normal concrete. The increases in stress levels of concrete change the pulse velocities and maximum frequencies, however the apparent relationship between themselves can not be found in this experiment.

Natural Frequency Measurement for Scour Damage Assessment of Caisson Pier (교량 우물통 기초의 세굴피해 평가를 위한 고유진동수 측정)

  • Nguyen, Quang-Thien-Buu;Ko, Seok-Jun;Jung, Gyungja;Lee, Ju-Hyung;Yoo, Min-Taek;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.51-60
    • /
    • 2021
  • River scour erodes the soil around the pier, reducing the lateral bearing capacity of the pier and lowering the stability of the structure. In this study, in order to examine the effect of scouring on the stability of the structure, an experiment was performed to measure the natural frequency of the pier according to the excavation of the surrounding ground. Impact vibration test was conducted on the pier with the caisson foundation of the Mangyeonggang Bridge, which is scheduled to be demolished. Accelerometers were attached to the top, center, and bottom of the pier and the acceleration responses were measured by hitting those three points. The experimental results showed that the top hit showed consistent and reasonable results of the acceleration responses according to the hitting position. The measured accelerations were converted to the frequency domain through Fast Fourier Transform (FFT), and then the natural frequency was determined. In addition, to analyze the scour effect on the natural frequency of the pier, the ground around the pier was excavated and the natural frequency change was analyzed. As a result, the natural frequency showed the decreasing tendency according to the excavation depth, but the decrease was small due to the large stiffness of the caisson foundation.