• Title/Summary/Keyword: 고속인장시험

Search Result 56, Processing Time 0.03 seconds

A Study on the Characteristic of Weld Joint and Tensile Fracture of SUS304 and Cu High-Speed Dissimilar Lap Welds by Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Cu의 고속 겹치기 용접에서 접합부 및 인장시험 파단부의 특성에 관한 연구)

  • Lee, Su-Jin;Kim, Jong-Do;Katayama, Seiji
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2014
  • To develop and understand dissimilar metals joining of Stainless steel and Copper, ultra-high speed laser lap welding was studied using single mode fiber laser in this study. SUS304 and Cu have large differences in materials properties, and Cu and Fe have no intermetallic compounds by typical binary phase of Cu and Fe system. In this study, ultra-high speed lap welds of SUS304 and Cu dissimilar metals using single-mode fiber laser was generated, and weldability of the weld fusion zone was evaluated using a tensile shear test. To understand the phenomenon of tensile shear load, weld fusion zone of interface weld area and fracture parts after tensile shear test were observed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis system. And it was confirmed that Cu was easily melting and penetrating in the grain boundaries of SUS304 because of low melting temperature. And high thermal conductivity of copper occurred dissipate heat energy rapidly. These properties cause the solidification cracking in weld zone.

Dynamic Material Test of Sinter-Forged Cu-Cr Alloy and Application to the Impact Characteristics of Vacuum Interrupter (구리-크롬 합금의 조성비에 따른 동적실험 및 진공 인터럽터 충격특성에의 적용)

  • Song, Jung-Han;Lim, Ji-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.447-452
    • /
    • 2004
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is obtained from the split Hopkinson pressure bar test. Experimental results from both quasi-static and dynamic compressive tests are interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the amount of chromium content.

  • PDF

Optimal Welding condition in Ultrasonic Welding of Ni steel sheet (Ni 박판의 초음파 용착시 최적용착 조건)

  • Seo, Jeong Seok;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.47-52
    • /
    • 2010
  • Miniaturization and lightweight are increasingly the recent trend in the manufacture of electric appliances and machine parts. So technology of micro joining for joining materials is indispensable. This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and Horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Ni sheet and Ni sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 45% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.

Dynamic Tensile Tests of Steel Sheets for an Auto-body at the Intermediate Strain Rate (중변형률 속도에서의 차체용 강판의 동적 인장실험)

  • Lim, Ji-Ho;Huh, Hoon;Kwon, Soon-Yong;Yoon, Chi-Sang;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.456-461
    • /
    • 2004
  • The dynamic behavior of sheet metals must be examined to ensure the impact characteristics of auto-body by a finite element method. An appropriate experimental method has to be developed to acquire the material properties at the intermediate strain rate which is under 500/s in the crash analysis of auto-body. In this paper, tensile tests of various different steel sheets for an auto-body were performed to obtain the dynamic material properties with respect to the strain rate which is ranged from 0.003/sec to 200/sec. A high speed material testing machine was made for tension tests at the intermediate strain rate and the dimensions of specimens that can provide the reasonable results were determined by the finite element analysis. Stress-strain curves were obtained for each steel sheet from the dynamic tensile test and used to deduce the relationship of the yield stress and the elongation to the strain rate. These results are significant not only in the crashworthiness evaluation under car crash but also in the high speed metal forming.

  • PDF

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

On the Derivation of Material Constants Associated with Dynamic Behavior of Heat Formed Plates (열성형 판 부재의 동적거동에 관련된 재료상수 산출에 관한 연구)

  • Lee, Joo-Sung;Lim, Hyung-Kyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.105-114
    • /
    • 2016
  • When impact load is applied to a plate structure, a common phenomenon that occurs in structures is plastic deformation accompanied by a large strain and eventually it will experience a fracture accordingly. In this study, for the rational design against accidental limit state, the plastic material constants of steel plate which is formed by line heating and by cold bending procedure have been defined through the numerical simulation for the high speed tension test. The usefulness of the material constants included in Cowper-Symonds model and Johnson-Cook model with the assumption that strain rate can be neglected when strain rate is less than the intermediate speed is verified through comparing the present numerical results with those in references. This paper ends with describing the future study.

Comparison of Inverter DC Spot Weldability with PI Controller Design (PI제어기 설계에 따른 인버터 DC 저항 점 용접의 용접성 비교)

  • Hwang, In-Sung;Yeun, Hyun-Joon;Eun, Jong-Mok;Kim, Dong-Cheol;Kang, Mun-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.117-117
    • /
    • 2009
  • 저항 점 용접 시스템은 SCR 방식과 Inverter 방식으로 나뉘어지는데 현재 공급전원의 안정화 및 고속의 제어가 가능한 Inverter 방식으로 점차 변해가는 추세이다. 이러한 추세에 따라 기존 SCR 방식에서는 구현하기 힘들었던 고속의 전류제어가 요구되고 있으며 여러 제어 알고리즘들이 적용되고 있다. 일반적으로 전류를 제어하기 위해 PI제어 알고리즘이 많이 사용되고 있다. PI제어보다 좀더 반응이 빠르고 정밀한 제어 알고리즘의 적용이 시도되고 있지만 실질적으로 현장에 적용하여 활용하기에 어려움이 있어 PI제어가 많이 선호되고 있다. 일반적으로 용접전류의 제어는 일정한 전류를 공급할 수 있게 하는 것이 주요하지만 저항 점 용접 시스템에서는 일정한 전류의 공급 이외에 목표 전류까지 도달하는 응답시간 또한 주요한 사항으로 작용하고 있다. 이는 짧은 통전시간으로 인해 응답성에 따라 입열량의 차이가 나타나기 때문이다. 응답시간이 느릴수록 그만큼 전류의 공급이 적어지고 이로 인해 입열량이 감소하게 된다. 국내의 Inverter 방식의 경우 응답시간이 15ms 이상이지만, 해외 선진 제품의 경우 10ms 이하의 응답시간을 가져 크게는 1cycle(16.6ms)의 차이가 나고 같은 용접전류 조건에서도 용접성의 차이가 나타나게 된다. 본 연구에서는 응답시간에 따른 용접성의 변화와 응답시간 제어의 필요성을 확인하기 위해 PI제어기를 응답시간에 따라 설계하고 이를 자체 제작한 Inverter DC 저항 점 용접기에 적용하여 용접실험을 실행하였다. 용접소재로는 현 자동차용 강판 소재인 SPFC590, 1mmt를 사용하였고 인장 및 단면시험을 통해 용접성을 비교하였다. 또한 각각의 로브곡선을 도출하고 비교하여 응답시간에 따른 용접성의 차이를 확인하였다.

  • PDF

High Speed Tensile Tests of Steel Sheets for an Auto-body at the Intermediate Strain Rate (중변형률 속도에서의 차체용 강판의 고속 인장실험)

  • Lim, Ji-Ho;Kim, Seok-Bong;Kim, Jin-Sung;Huh, Hoon;Lim, Jong-Dae;Park, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • This paper introduces a newly developed high speed material testing apparatus for tensile tests at the strain rate up to 500/sec. The tensile properties of sheet metals are indispensable for the accurate crashworthiness analysis of auto-bodies since the local strain rate reaches to 500/sec in the car crash. An appropriate experimental method has to be developed to acquire the tensile properties at the intermediate strain rate ranged from 0.003/sec to 200/sec. Tensile tests of various different steel sheets for an auto-body were perform ed to obtain the dynamic properties with respect to the strain rate. The dimensions of specimens that can provide the reasonable results were determined by the finite element analysis. A special jig fixture of a load cell is designed to reduce the load ringing phenomenon induced by unstable stress propagation at the high strain rate. Stress-strain curves were acquired for each steel sheet from the dynamic tensile test and utilized to obtain the relationship of the stress to the strain rate.

Tension Test on the Bar-type Anti-buoyancy Anchors in the Weathered Rock (풍화암에 시공된 Bar Type 부력저항 앵커의 인장 시험)

  • Park, Chan-Duk;Lee, Kyu-Hwan;Ryu, Nam-Jae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.175-181
    • /
    • 2004
  • This study is about a section where underground water level occurs at the underground 5m depth by the excavation of the ground, as a stream is adjacent to a excavation section of High Speed Railway ${\bigcirc}{\bigcirc}$ Station construction sections and a reservoir being always full of water is located at the left side of the construction section. Therefore this test is executed for the design and construction of buoyance anchors able to permanently prevent buoyance by the underground water level at working and for the stable construction and permanent smooth maintenance of structures. In this test, bar type anchors are divided according to their length and standard to execute test-anchor test, and In spot test, 9 test-anchors test, proof test to construction process, suitability test and acceptance test are executed 4 times to 9 test-anchors by dividing anchors according to the length of permanent anchor, the outer diameter of bar and boring diameter. Standard motion characteristic centering on load transmission and break mechanism of bar-type anchors for the prevention of buoyance will be showed in the thesis.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.