• Title/Summary/Keyword: 고속도카메라

Search Result 55, Processing Time 0.026 seconds

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector (수직 오리피스 이젝터의 혼합유동 및 산소전달 특성)

  • Kim, Dong Jun;Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

A Study on Adaptable Non-contact Shape Inspection System (적응형 비접촉 형상 검사에 관한 연구)

  • Kang, Young-June;Park, Nak-Gyu;Lee, Dong-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.74-80
    • /
    • 2005
  • A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3D data of an object was calculated from the 2 dimensional image information obtained by the laser stripe using the laser triangulation. The system that use existing theory can measure the diameter of hole not only in a normal plane but also ill an incline plane. However, in the existing theory, since the lens with fixed feral length was used, the area of measurement was fixed. The simplest way to solve this problem is to change distance between a CCD camera and object. Other way is to use a zoom lens having variable focal length. In this paper, the zoom lens with variable focal length was used. Therefore, we ran experiment with magnification that is optimized according to size of object using zoom lens with variable focal length.

Comparative Study of Modeling of Hand Motion by Neural Network and Kernel Regression (손 동작을 모사하기 위한 신경회로망과 커널 회귀의 모델링 비교 연구)

  • Yang, Hac-Jin;Kim, Hyung-Tae;Kim, Seong-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.399-405
    • /
    • 2010
  • The grasping motion of a person's hand for a simplified degree of freedom was modeled by using the photographic motion measured by a high-speed camera. The mathematical expression of distal interphalangeal (DIP) motion was developed by using relation models of the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) motions to reduce the degree of freedom. The mathematical expression for humanoid-hand operation obtained using a learning algorithm with a neural network and using a kernel regression model were compared. A feasible model of hand operation was obtained on the basis of comparative data analysis by using the kernel regression model.

Multiple-Point-Diffraction Interferometer : Error Analysis and Calibration (거친 표면 형상측정을 위한 점광원 절대간섭계의 오차해석과 시스템 변수의 보)

  • Kim, Byoung-Chang;Kim, Seung-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.361-365
    • /
    • 2005
  • An absolute interferometer system with multiple point-sources is devised for tile 3-D measurement of rough surface profiles. The positions of the point sources are determined to be the system parameters that influence the measurement accuracy, so they are calibrated precisely prior to performing actual measurements. For the calibration, a CCD camera composed of a two-dimensional array of photo-detectors was used. Performing optimization of the cost function constructed with phase values measured at each pixel on the CCD camera, the position coordinates of each point source is precisely determined. Measurement results after calibration performed for the warpage inspection of chip scale packages (CSPs) demonstrate that the maximum discrepancy is 9.8 mm with a standard deviation o( 1.5 mm in comparison with the test results obtained by using a Form Taly Surf instrument.

Firmware Design and system of stepwise synchronization for CMOS image sensor (Stepwise 동기화 지원을 위한 CMOS 이미지 센서 Firmware 설계 및 개발)

  • Park, Hyun-Moon;Park, Soo-Huyn;Lee, Myung-Soo;Seo, Hae-Moon;Park, Woo-Chool;Jang, Yun-Jung
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.199-208
    • /
    • 2008
  • Lately, since Complementary Metal Oxide Semiconductor(CMOS) image sensor system has low power, low cost and been miniaturized, hardware and applied software studies using these strengths are being carrying on actively. However, the products equipped with CMOS image sensor based polling method yet has several problems in degree of completeness of applied software and firmware, compared with hardware’s. CMOS image sensor system has an ineffective synchronous problem due to superfluous message exchange. Also when a sending of data is delayed continually, overhead of re-sending is large. So because of these, it has a problem in structural stability according to Polling Method. In this study, polling cycle was subdivided in high-speed synchronization method of firmware -based through MCU and synchronization method of Stepwise was proposed. Also, re-connection and data sending were advanced more efficiently by using interrupt way. In conclusion, the proposed method showed more than 20 times better performance in synchronization time and error connection. Also, a board was created by using C328R board of CMOS image sensor-based and ATmega128L which has low power, MCU and camera modules of proposed firmware were compared with provided software and analyzed in synchronization time and error connection.

  • PDF

Hybrid (refrctive/diffractive) lens design for the ultra-compact camera module (초소형 영상 전송 모듈용 DOE(Diffractive optical element)렌즈의 설계 및 평가)

  • Lee, Hwan-Seon;Rim, Cheon-Seog;Jo, jae-Heung;Chang, Soo;Lim, Hyun-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.240-249
    • /
    • 2001
  • A high speed ultra-compact lens with a diffractive optical element (DOE) is designed, which can be applied to mobile communication devices such as IMT2000, PDA, notebook computer, etc. The designed hybrid lens has sufficiently high performance of less than f/2.2, compact size of 3.3 mm (1st surf. to image), and wide field angle of more than 30 deg. compared with the specifications of a single lens. By proper choice of the aspheric and DOE surface which has very large negative dispersion, we can correct chromatic and high order aberrations through the optimization technique. From Seidel third order aberration theory and Sweatt modeling, the initial data and surface configurations, that is, the combination condition of the DOE and the aspherical surface are obtained. However, due to the consideration of diffraction efficiency of a DOE, we can choose only four cases as the optimization input, and present the best solution after evaluating and comparing those four cases. On the other hand, we also report dramatic improvement in optical performance by inserting another refractive lens (so-called, field flattener), that keeps the refractive power of an original DOE lens and makes the petzval sum zero in the original DOE lens system. ystem.

  • PDF

Fast Multiple-Image-Based Deblurring Method (다중 영상 기반의 고속 처리용 디블러링 기법)

  • Son, Chang-Hwan;Park, Hyung-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.49-57
    • /
    • 2012
  • This paper presents a fast multiple-image-based deblurring method that decreases the computation loads in the image deblurring, enhancing the sharpness of the textures or edges of the restored images. First, two blurred images with some blurring artifacts and one noisy image including severe noises are consecutively captured under a relatively long and short exposures, respectively. To improve the processing speeds, the captured multiple images are downsampled at the ratio of two, and then a way of estimating the point spread function(PSF) based on the image or edge patches extracted from the whole images, is introduced. The method enables to effectively reduce the computation time taken in the PSF prediction. Next, the texture-enhanced image deblurring method of supplementing the ability of the texture representation degraded by the downsampling of the input images, is developed and then applied. Finally, to get the same image size as the original input images, an upsampling method of utilizing the sharp edges of the captured noisy image is applied. By using the proposed method, the processing times taken in the image deblurring, which is the main obstacle of its application to the digital cameras, can be shortened, while recovering the fine details of the textures or edge components.

A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement (Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘)

  • Jeong Dong-Gil;Kang Dong-Goo;Yang Yu Kyung;Ra Jong Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we propose a two-stage head tracking algorithm adequate for real-time active camera system having pan-tilt-zoom functions. In the color convergence stage, we first assume that the shape of a head is an ellipse and its model color histogram is acquired in advance. Then, the min-shift method is applied to roughly estimate a target position by examining the histogram similarity of the model and a candidate ellipse. To reflect the temporal change of object color and enhance the reliability of mean-shift based tracking, the target histogram obtained in the previous frame is considered to update the model histogram. In the updating process, to alleviate error-accumulation due to outliers in the target ellipse of the previous frame, the target histogram in the previous frame is obtained within an ellipse adaptively shrunken on the basis of the model histogram. In addition, to enhance tracking reliability further, we set the initial position closer to the true position by compensating the global motion, which is rapidly estimated on the basis of two 1-D projection datasets. In the subsequent stage, we refine the position and size of the ellipse obtained in the first stage by using shape information. Here, we define a robust shape-similarity function based on the gradient direction. Extensive experimental results proved that the proposed algorithm performs head hacking well, even when a person moves fast, the head size changes drastically, or the background has many clusters and distracting colors. Also, the propose algorithm can perform tracking with the processing speed of about 30 fps on a standard PC.

Experimental Study on Characteristics of Steam Condensation in a Sub-cooled Water Pool (과냉각수조에서 증기응축 특성에 관한 실험적 연구)

  • Kim, Hwan-Yeol;Cho, Seok;Song, Chul-Hwa;Chung, Moon-Ki;Choi, Sang-Min
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.298-308
    • /
    • 1999
  • Experimental study on characteristics of direct contact condensation of steam discharged into a sub-cooled water pool has been performed using five different sizes of horizontal nozzle over a wide range of steam mass fluxes and pool temperatures. Steam condensation phenomena have been observed visually and by taking pictures of steam jets using a high speed video camera. Two different steam jet shapes such as ellipsoidal shape and conical shape were typically observed for a stable steam jet, depending on the steam mass flux and pool temperature. The steam jet expansion ratio and the steam jet length as well as the condensation heat transfer coefficients were determined. The effect of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Empirical correlations for the steam jet lengths and the condensation heat transfer coefficients as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in steam jet and in surrounding water were measured. The effect of steam mass flux, pool temperature, and nozzle diameter were also discussed. The condensation regime map, which consists of six regimes such as chugging, transient chugging, condensation oscillation, stable condensation, bubble condensation oscillation, and intermittent oscillation condensation, were established. In addition, the dynamic pressures at the pool wall were measured. The close relation of dynamic pressure and steam condensation mode, which is also dependent on steam mass flux and pool temperature, was found.

  • PDF