• Title/Summary/Keyword: 고분자 물질

Search Result 1,050, Processing Time 0.024 seconds

Microencapsulation of Iron Oxide Nanoparticles and Their Application in Magnetic Levitation of Cells (산화철 나노입자의 마이크로캡슐화와 이를 이용한 세포의 자력부상 배양)

  • Lee, Jin Sil;Lee, Joon ho;Shim, Jae Kwon;Hur, Won
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Iron oxide nanoparticles were microencapsulated using fibroin, a protein polymer of silk fiber, for theragnostic applications. The content of iron oxide was determined to be 4.28% by thermogravimetric analysis and 5.11% by magnetometer. A suspension of murine fibroblast 3T3 cells grown in medium supplemented with iron oxide-microcapsules turned clear in response to the magnetic force and the cells aggregated to the magnet direction. Neodymium magnets placed on the top of the culture dish, and attracted cells to the center of the culture surface. The cells collected on the culture surface aggregated to form a rough spheroid of 2 mm in a diameter after 72 h. In the outer layer of the cell aggregate, cells were relatively large and gathered together to form a dense tissue, but the central part was observed to undergo cell death due to the mass transfer restriction. In the outer layer, iron oxide-microcapsules were lined up like chains in the direction of magnetic force. Using microCT, it was demonstrated that the iron oxides inside the cell aggregate were not evenly distributed but biased to the magnetic direction.

Effect of Rhynchosia Nulubilis Ethanolic Extract on DOPA Oxidation and Melanin Synthesis (서목태 주정 추출물이 DOPA 산화와 멜라닌 합성에 미치는 영향)

  • Kim, JaeRyeon;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.331-338
    • /
    • 2018
  • Melanin is a polymer substance that plays an important role in the determination of hair growth and skin color in vivo. However, melanin, which is over-produced by reactive oxygen species, is known to cause stains, freckles, and hypercholesterolemia, which are associated with aging. Previous studies have shown that polyphosphate, one of the components of Rhynchosia Nulubilis, inhibits skin aging induced by ultraviolet rays. The aim of this study is to investigate the direct effect of Rhynchosia Nulubilis ethanolic extract (RNEE) on melanin synthesis. In this study, RNEE showed no antioxidative effects on scavenging activity of DPPH radical in addition to reducing power. The cytotoxicity of RNEE was increased in a dose-dependent manner in an MTT assay. In addition, RNEE increased tyrosinase activity and melanin synthesis in DOPA-oxidation experiments. RNEE did not promote the conversion L-DOPA into melanin in live cells, but melanin production was promoted in the RNEE-treated group after H2O2 pretreatment compared to the control group in which melanin production was reduced by treatment with H2O2. In addition, RNEE increased the expression level of tyrosinase related protein-2 (TRP-2) and increased the expression level of tyrosinase related protein-1 (TRP-1) at a concentration of $16{\mu}g/ml$. In particular, it was found that RNEE increased the expression level of SOD-3, by which superoxide anion is converted to hydrogen peroxide, higher than the control and ${\alpha}$-MSH used as a positive control at a concentration of more than $16{\mu}g/ml$. The results suggest that RNEE can induce melanogenesis related to black hair.

Characterization of lycopene pigments by steric effect of polymer adsorption layer (고분자 흡착층의 입체장해효과를 이용한 라이코펜 색소의 특성분석)

  • Bae, Jihyun;Jung, Jongjin;Lee, Seungho;Kim, Woonjung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.357-366
    • /
    • 2017
  • Natural pigments are materials that express color and have been used in foods, cosmetics, medicine and so on. Since natural pigments are extracted from animals and plants, they are not uniform in size. Red pigments in particular are more lipophilic than other color pigments and tend to aggregate easily in aqueous solutions which make it difficult to reproduce the specific color due to size change. Found to be an allergen and the growing aversion for it to be used in foods, cochineal pigment, an animal pigment used for red pigments is being used less. In this study, red vegetable pigment lycopene extract and gardenia yellow was made uniform in size by ball-milling, then asymmetrical flow-field flow fractionation (AsFlFFF) and dynamic light scattering (DLS) were used to measure the size, and a color meter was used to confirm the color. Experimental results showed that the pigment particles were large in size and size distribution was wide before milling, but the size of the particles decreased and size distribution narrowed after milling. Color meter measurements showed that as the milling time increased, the size of the pigment particles decreased and the brightness, redness, and yellowness increased indicating a bright red color.

Positive Effect of Musa paradisiaca Peel Ethanolic Extract on Antioxidant Activity and Melanin Synthesis (바나나 껍질 에탄올 추출물이 멜라닌 합성에 미치는 영향)

  • Kim, JaeRyeon;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.802-810
    • /
    • 2018
  • Aging is accompanied by changes in the body, such as graying hair, wrinkles, and black spots composed of lipid peroxides and proteins. Melanin is a polymer substance produced by an oxidation polymerization reaction from tyrosine, and it determines the color of hair and skin. It has been reported that melanin is synthesized by melanocyte, and its excessive production by reactive oxygen species is associated with aging. The purpose of this study was to determine the direct effects of Musa paradisiaca peel ethanolic extract (MPEE) on antioxidative activity and melanin synthesis. It was observed that the antioxidant activity of MPEE was similar to that of vitamin C, a positive control, in both DPPH radical scavenging assay and reducing power assay. In order to examine cytotoxicity prior to cell experimentation, 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed for B16F1 cells. MPEE was not cytotoxic at $32{\mu}g/ml$ or less. In addition, MPEE increased melanin synthesis in live cells in addition to tyrosinase activity and melanin synthesis in dihydroxyphenylalanine (DOPA)-oxidation assay in vitro. Moreover, MPEE increased melanin synthesis in cells aged by pretreatment with $H_2O_2$. The expression levels of tyrosinase-related protein (TRP)-1, TRP-2, and superoxide dismutase (SOD)-2 by western blot analysis were increased in the presence of MPEE. These results suggest that MPEE could promote the melanin synthesis as an antioxidative substance.

Behavior of Soluble Microbial Products in a Submerged Membrane Separation Activated Sludge Process (침지형 막분리 활성오니법에 있어서 생물대사성분의 거동)

  • Cha, Gi-Cheol;Lee, Dong-Yeol;Shim, Jin-Kie;Lee, Yong-Moo;Yoo, Ik-Keun;Ann, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.959-970
    • /
    • 2000
  • A laboratory-scale experiment was conducted to investigate the effect of soluble microbial products(SMP) on permeate flux in the submerged membrane separation activated sludge process. Continuous and batch filtration test were operated to understand mechanism of relationship between membrane fouling and SMP. Synthetic wastewater(phenol) was used as a carbon source. Hydraulic retention time(HRT) and mixed-liquor volatile suspended solids(MLVSS) of the reactor were kept at 12 hours and 9.000mg VSS/L, respectively. Batch filtration tests ($J_{60}/J_o$) using the mixed liquor from reactor showed that the increase of accumulated SMP concentration in the reactor caused to the decreasing permeate flux and the increasing of the adhesion matters which form cake and gel layer. The resistance value of cake layer was measured $2.9{\times}10^{10}{\sim}4.0{\times}10^{10}(1/m)$, this value showed more significant effect on flux drop than that of among other resistance layers. Batch phenol-degradation experiment was conducted to observe SMP type expected $SMP_{nd}$ and $SMP_{e}$ (SMP resulted from endogenous cell decomposition), these are non-biodegradable high molecular weight organic matter and playa significant role in permeate flux drop. Also, SMP concentration was accumulated as increased of HRT against flux drop.

  • PDF

Development of Oxo-biodegradable Bio Film by Using Biodegradable Catalyst (생분해 촉매제를 이용한 산화생분해 바이오 필름 개발)

  • Rhee, Jin-Kyu;Jung, Dong Seok;You, Young-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.127-134
    • /
    • 2016
  • In this study, Biodegradable masterbatch (M/B) was prepared by different kinds and content of biodegradable catalysts added to oxo biodegradable plastics. The bio film was prepared by adding biodegradable M/B to the polyethylene pellet, and the change of physical properties by UV and heat treatment and the stability as food packaging material were confirmed. As a result of the physical property change, Fe salt and Al salt bio film was superior to Ni salt bio film about a decrease in physical property. However, considering the raw material cost and industrial availability, M/B containing Fe salt was selected and additional experiments were conducted by concentration. The bio films prepared with Fe salt M/B 1.0, 1.5 and 2.0 wt% showed excellent physical properties.

Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion (상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung;Park, Jong Soon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • Porous poly(L-lactic acid)(PLLA) scaffold membranes were prepared via. phase separation process. Chloroform, dichloromethane and 1,4-dioxane were used as solvent and, ethyl alcohol was used as non-solvent. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. The scaffold membranes obtained from the casting solutions with chloroform and with dichloromethane showed similar morphologies. They showed sponge-like porous structure with the pore size in the range of $3-10{\mu}m$ and, their porosities were in 50-80% range. Using 1,4-dioxane as solvent, nano-fibrous scaffold membranes with porosities over 80% were fabricated. When the polymer content in the solution with 1,4-dioxane was lowered to 4%, highly porous, macroporous and nano-fibrous scaffold membranes were obtained. The size of the macropore was tens of the microns and the porosity was around 90%. These results indicate that the solvent has significant effect on the scaffold membrane structure and, that scaffold membranes with various structures can be fabricated through phase separation method by choosing solvent and by controlling polymer concentration in the casting solution.

Development of Graphene Nanocomposite Membrane Using Layer-by-layer Technique for Desalination (다층박막적층법을 이용한 담수화용 그래핀 나노복합체 분리막 개발)

  • Yu, Hye-Weon;Song, Jun-Ho;Kim, Chang-Min;Yang, Euntae;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • Forward osmosis (FO) desalination system has been highlighted to improve the energy efficiency and drive down the carbon footprint of current reverse osmosis (RO) desalination technology. To improve the trade-off between water flux and salt rejection of thin film composite (TFC) desalination membrane, thin film nanocomposite membranes (TFN), in which nanomaterials as a filler are embeded within a polymeric matrix, are being explored to tailor the separation performance and add new functionality to membranes for water purification applications. The objective of this article is to develop a graphene nanocomposite membrane with high performance of water selective permeability (high water flux, high salt rejection, and low reverse solute diffusion) as a next-generation FO desalination membrane. For advances in fabrication of graphene oxide (GO) membranes, layer-by-layer (LBL) technique was used to control the desirable structure, alignment, and chemical functionality that can lead to ultrahigh-permeability membranes due to highly selective transport of water molecules. In this study, the GO nanocomposite membrane fabricated by LBL dip coating method showed high water flux ($J_w/{\Delta}{\pi}=2.51LMH/bar$), water selectivity ($J_w/J_s=8.3L/g$), and salt rejection (99.5%) as well as high stability in aqueous solution and under FO operation condition.

Haze Characteristics of Mica Coated with Magnesium Oxide (산화마그네슘을 코팅한 마이카의 헤이즈 특성)

  • Kang, Kuk-Hyoun;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.888-894
    • /
    • 2015
  • Inorganic composite particles have excellent physical and chemical characteristics and have been applied in various industries. Recently, many studies have examined the optical properties, such as light scattering, refraction, transmission characteristics, by coating organic-inorganic materials on a substrate, such as mica. Mica is widely applied as a pigment, plastics, painted products, and ceramics because of its high chemical stability, durability and non-toxicity. Magnesium oxide has a range of properties, such as high light transmittance, corrosion resistance and non-toxicity, and it is used as an optical material and polymer additives. To use the optical properties of mica and magnesium oxide, mica was coated with magnesium hydroxide by a dissolution and recrystallization process. In this study, the optimal conditions for the haze value of the particles were found by adjusting the amount of precursors and pH. Magnesium hydroxide layers were formed on the surfaces of mica and converted to MgO after calcination at $400^{\circ}C$ for 4 h. The results showed that the value of MgO-coated mica haze can be controlled easily by the amount of the magnesium hydroxide and pH. The optical properties of the inorganic composite powder were analyzed using a hazemeter and the highest haze value was 85.92 % at pH 9. The physicochemical properties of the synthesized composite was analyzed by SEM, XRD, EDS, and PSA.

Characterization of Embryo-specific Autophagy during Preimplantation (착상전 난자 자식작용의 특성규명)

  • Lee, Jae-Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3541-3546
    • /
    • 2011
  • Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles in addition to recycling protein and ATP synthesis. Although autophagy is very important during embryogenesis, the mechanism underlying the dynamic development during this process remains largely unknown. In order to obtain insights into autophagy in early embryo development, we analyzed gene expression levels of autophagy-related genes (ATGs) in mouse embryos developing in vitro. Using real time RT-PCR technique, ATGs including Atg2a, Atg3, Atg4b, Atg5, Atg6, Atg7, Atg9a, and Wipi3, as maternal transcripts, were only up-regulated in 1-cell embryo stage before zygotic genomic activation (ZGA), and then expression decreased from 2-cell to blastocyst embryo stage. ATGs including Dram and Atg9b were expressed abundantly in 1-cell embryo state and in blastocyst embryo stage, athough Atg8 and Ulk1 were constantly expressed during preimplantation stage. However, Atg4d were only up-expressed from 4-cell to blastocyst stage. These results suggest that autophagy is related in mouse embryo, which possibly gives an important role for early development.