• Title/Summary/Keyword: 고밀도

Search Result 1,743, Processing Time 0.028 seconds

Association of vitamin E levels with metabolic syndrome, and metabolic syndrome components among adults (성인의 비타민E 수준에 따른 대사증후군 및 대사증후군 요인과의 연관성)

  • Kim, Taehui
    • Journal of Industrial Convergence
    • /
    • v.19 no.5
    • /
    • pp.69-77
    • /
    • 2021
  • This study identified vitamin E associated with metabolic syndrome and metabolic syndrome components among Korean adults aged over 19 years. Secondary data from the 2016-2018 Korean National Health and Nutrition Examination Survey were used for this study. Data from 6,425 were analyzed by logistic regression analysis using a complex sample procedure. As a result of logistic regression analysis, the odds ratio was increased in the group with high vitamin E levels compared to the group with normal vitamin E levels. There are metabolic syndrome (Adjusted Odds Ratio [AOR]: 1.889, 95% Confidence Interval [CI]: 1.550-2.303, p<.001), abdominal obesity (AOR: 1.444, CI: 1.205-1.730, p<.001), hyperglyceridemia(AOR: 3.182, CI: 2.641-3.835, p<.001), systolic blood pressure (AOR: 1.711, CI: 1.446-2.026, p<.001), diastolic blood pressure (AOR: 1.806, CI: 1.521-2.144, p<.001), low high density lipoprotein cholesterol (AOR: 1.558, CI: 1.060-2.290, p=.024). Therefore vitamin E was associated with metaboic syndrome and metabolic syndrome components. So when providing nursing intervention for people with metabolic syndrome, education on vitamin E should be actively included.

Comparative Experiment of 2D and 3D DCT Point Cloud Compression (2D 및 3D DCT를 활용한 포인트 클라우드 압축 비교 실험)

  • Nam, Kwijung;Kim, Junsik;Han, Muhyen;Kim, Kyuheon;Hwang, Minkyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.553-565
    • /
    • 2021
  • Point cloud is a set of points for representing a 3D object, and consists of geometric information, which is 3D coordinate information, and attribute information, which is information representing color, reflectance, and the like. In this way of expressing, it has a vast amount of data compared to 2D images. Therefore, a process of compressing the point cloud data in order to transmit the point cloud data or use it in various fields is required. Unlike color information corresponding to all 2D geometric information constituting a 2D image, a point cloud represents a point cloud including attribute information such as color in only a part of the 3D space. Therefore, separate processing of geometric information is also required. Based on these characteristics of point clouds, MPEG under ISO/IEC standardizes V-PCC, which imitates point cloud images and compresses them into 2D DCT-based 2D image compression codecs, as a compression method for high-density point cloud data. This has limitations in accurately representing 3D spatial information to proceed with compression by converting 3D point clouds to 2D, and difficulty in processing non-existent points when utilizing 3D DCT. Therefore, in this paper, we present 3D Discrete Cosine Transform-based Point Cloud Compression (3DCT PCC), a method to compress point cloud data, which is a 3D image by utilizing 3D DCT, and confirm the efficiency of 3D DCT compared to V-PCC based on 2D DCT.

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Applying Rosen-type PZT plasma generation device for medical applications (로젠형 압전변압기를 적용한 의료융합 플라즈마기기)

  • Lee, Kang-yeon;Jung, Byung-Geun;Park, Jeong-sook;Park, Ju-Hoon;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.243-250
    • /
    • 2021
  • In the medical field, applications of plasma are applied sterilize instruments mainly but with the advent of bio-plasma technology, the scope of application is expanding. Recently, In addition, high-density miniaturization with handheld is required for sophisticated procedures when irradiated directly or treated with non-standard conditions. Rosen-type PZT is a device with a structure that generates high voltage plasma by achieving voltage transformation through electro-mechanical coupling using piezoelectric effect.and is used in portable plasma generating devices as an advantage to increase energy density relatively. In this paper, Rosen-type PZT was modeled using equivalent circuits and was carried out and a plasma generating device for medical application was designed and prototype tested. Prototype plasma generating device generates an output voltage of 5.8 kV with 12V input power and is designed to operate at high voltage by applying the half-bridge topology power converter. The results of the study confirmed the availability of various medical devices, such as plasma jets or direct exposure equipment.

An Analysis of Water Vapor Pressure to Simulate the Relative Humidity in Rural and Mountainous Regions (고해상도 상대습도 모의를 위한 농산촌 지역의 수증기압 분석)

  • Kim, Soo-ock;Hwang, Kyu-Hong;Hong, Ki-Young;Seo, Hee-Chul;Bang, Ha-Neul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.299-311
    • /
    • 2020
  • This paper analyzes the distribution of water vapor pressure and relative humidity in complex terrains by collecting weather observation data at 6 locations in the valley in Jungdae-ri, Ganjeon-myeon, Gurye-gun, Jeolla South Province and 14 locations in Akyang-myeon, Hadong-gun, Gyeongsang South Province, which form a single drainage basin in rural and mountainous regions. Previously estimated water vapor pressure used in the early warning system for agrometeorological hazard and actual water vapor pressure arrived at using the temperature and humidity that were measured at the highest density (1.5 m above ground) at every hour in the valley of Jungdae-ri between 19 December 2014 and 23 November 2015 and in the valley of Akyang between 15 August 2012 and 18 August 2013 were compared. The altitude-specific gradient of the observed water vapor pressure varied with different hours of the day and the difference in water vapor pressure between high and low altitudes increased in the night. The hourly variations in the water vapor pressure in the weather stations of the valley of Akyang with various topographic and ground conditions were caused by factors other than altitude. From the observed data of the study area, a coefficient that adj usts the variation in the water vapor pressure according to the specific difference in altitude and estimates it closer to the actual measured level was derived. Relative humidity was simulated as water vapor pressure estimated against the saturated water vapor pressure, thus, confirming that errors were further reduced using the derived coefficient than with the previous method that was used in the early warning system.

Sensor technology for environmental monitoring of shrimp farming (새우양식 환경 모니터링을 위한 센서기술 동향 분석)

  • Hur, Shin;Park, Jung Ho;Choi, Sang Kyu;Lee, Chang Won;Kim, Ju Wan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.154-164
    • /
    • 2021
  • In this study, the IoT sensor technology required for improving the survival rate and high-density productivity of individual shrimp in smart shrimp farming (which involves the usage of recirculating aquaculture systems and biofloc technology) was analyzed. The principles and performances of domestic and overseas water quality monitoring IoT sensors were compared. Furthermore, the drawbacks of existing aquaculture monitoring technologies and the countermeasures for future aquaculture monitoring technologies were examined. In particular, for farming white-legged shrimp, an IoT sensor was employed to collect measurement indicators for managing the water quality environment in real-time, and the IoT sensor-based real-time monitoring technology was then analyzed for implementing the optimal farming environment. The results obtained from this study can potentially contribute to the realization of an autonomous farming platform that can improve the survival rate and productivity of shrimp, achieve feed reduction, improve the water quality environment, and save energy.

The Effects of 12-Week Training for the Physical Fitness and Cardiovascular Factors to Examine Physical Fitness on Firefighters Test-Taker (소방공무원 수험생의 체력검정을 위한 12주간 훈련이 체력요인, 심혈관계요인에 미치는 영향)

  • Lim, Youn-Sub;Park, Jin-Hong;Kim, Jong-Hyuck;Kim, In-Dong;Kim, Jae-Joong;Park, Jeong-Beom;Lee, Chae-Mun
    • Journal of Industrial Convergence
    • /
    • v.19 no.4
    • /
    • pp.111-126
    • /
    • 2021
  • The purpose of this study was to investigate the effects of 12-week training on changes in physical fitness and cardiovascular factors for firefighters. For this purpose, 40 men in their 20s and 30s who agreed to participate voluntarily were recruited. They were divided into four groups: the firefighters' physical fitness test training group (hereinafter referred to as PT group), firefighters' physical fitness test and aerobic training group (hereinafter referred to as PT+AR group), firefighters' physical fitness test and both aerobic and anaerobic training group (hereinafter referred to as PT+CO group). Physical fitness factors (grip strength, back muscle strength, seated forward bend, standing long jump, sit-ups, 20-meter shuttle run), cardiovascular factors (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, glucose, waist circumference, systolic blood pressure, diastolic blood pressure) and the relationship between Framingham Heart Risk Score and physical/cardiovascular factors were compared and analyzed, and the following conclusions were obtained. Aerobic training, anaerobic training, and combined training, including 12 weeks of firefighter physical examinations, all had positive effects on fitness and cardiovascular factors, which would be an appropriate way for firefighter examinees to improve physical strength and reduce the risk of cardiovascular disease.

Numerical Analysis of Wind Environment around Sungnyemun Gate Using a Computational Fluid Dynamics Model (전산유체역학 모델을 이용한 숭례문 주변의 풍환경 수치해석)

  • Son, Minu;Kim, Do-Yong
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2021
  • In this study, the wind environment in an urban area near Sungneymun gate was numerically investigated in the cases of inflow directions. The wind fields for the target area were simulated using Geographic Information System data and Computational Fluid Dynamics model. Results, including vector fields, three-dimensional wind velocity components, and wind speeds, were analyzed to examine flow characteristics. Wind direction variability affected by buildings was shown in the target area. The complex flows around Sungneymun did not depend on the inflow direction as a boundary condition. The wind speed around Sungneymun was generally 3 times stronger at 14 m above ground level (AGL) compared to the surface wind at 2 m AGL and relatively high in the case of easterly inflow. The effect of wind was also analyzed to be relatively significant at the southeast side of Sungneymun. Thus, it was suggested that the assessment of wind environment affected by high-rise and high-density buildings should be necessary for the architectural heritage in urban areas.

Improvement of Water Quality by Corona Discharge Plasma-activated Water in a Tilapia Recirculating Aquaculture System (코로나 방전-플라즈마 처리수의 틸라피아 순환여과양식시스템 수질 개선 효과)

  • You, Jin Ho;Mun, Seong Hee;Oh, Hyeon Ji;Park, Tae Sup;Kwon, Joon Yeong
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 2020
  • Disinfection and maintenance of rearing water in aquaculture is an essential element for the prevention of fish diseases. This is especially important in recirculating aquaculture systems (RAS) in which fish are reared at high density using recycled water. In this study, tilapia was reared in two different RAS (one with plasma generator - PW system, another without plasma generator - No PW system). In plasma treated group, UVT% of water was improved clearly, and the number of heterotrophic bacteria decreased significantly after 40 days. Total weight gain of tilapia in PW system was significantly higher, and other growth indicators were also relatively higher although not statistically significant. In addition, the fish in PW system had a 100% survival rate, and there were no histological differences between fish from both systems. Fish did not seem to be affected by the toxicity of ROS. In conclusion, it is expected that plasma water can effectively deactivate fish pathogens and improve the quality of rearing water.

Heating Characteristics of Planar Heater Fabricated with Different Mixing Ratios of MXene-CNT-WPU Composites (MXene-CNT-WPU 복합소재 기반 면상발열체의 배합 비율에 따른 발열 특성)

  • Hyo-Jun, Oh;Quy-Dat, Nguyen;Yoonsik, Yi;Choon-Gi, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.278-284
    • /
    • 2022
  • This study presents an excellent planar heater based on low-dimensional composites. By optimizing the ratio of 1D carbon nanotubes (CNT) and 2D MXene (Ti3C2TX), it is possible to create a planar heater that has superior electrical conductivity and high heat generation characteristics. Low-dimensional composites were prepared by mixing CNT paste and MXene solution with eco-friendly waterborne polyurethane (WPU). In order to find the optimal mixing ratio for the MXene-CNT-WPU composites, samples with MXene to CNT weight ratios of 3:1, 1:1, 1:3, 1:7, and 1:14 were investigated. In addition to these different weight ratios, 5 wt% WPU was equally applied to each sample. It was confirmed that the higher the weight ratio of CNT, the lower the sheet resistance and the higher the heating temperature. In particular, when the MXene-CNT-WPU planar heater was fabricated by mixing MXene and CNT at a weight ratio of 1:7 and 1:14, the heating temperature was higher than the heating temperature of a CNT-WPU planar heater. These characteristics are due to the optimized mixture of the 1D materials (CNT) and the 2D materials (MXene) causing the formation of a flat surface and a dense network structure. The low-dimensional composites manufactured with the optimized mixing ratios found in this study are expected to be applied in flexible electronic devices.