DOI QR코드

DOI QR Code

Improvement of Water Quality by Corona Discharge Plasma-activated Water in a Tilapia Recirculating Aquaculture System

코로나 방전-플라즈마 처리수의 틸라피아 순환여과양식시스템 수질 개선 효과

  • You, Jin Ho (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Mun, Seong Hee (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Oh, Hyeon Ji (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Park, Tae Sup (JIN JIN E&T Co., Ltd.) ;
  • Kwon, Joon Yeong (Department of Aquatic Life Medical Sciences, Sunmoon University)
  • 유진호 (선문대학교 수산생명의학과) ;
  • 문성희 (선문대학교 수산생명의학과) ;
  • 오현지 (선문대학교 수산생명의학과) ;
  • 박태섭 ((주)진진이앤티) ;
  • 권준영 (선문대학교 수산생명의학과)
  • Received : 2020.11.13
  • Accepted : 2020.12.01
  • Published : 2020.12.16

Abstract

Disinfection and maintenance of rearing water in aquaculture is an essential element for the prevention of fish diseases. This is especially important in recirculating aquaculture systems (RAS) in which fish are reared at high density using recycled water. In this study, tilapia was reared in two different RAS (one with plasma generator - PW system, another without plasma generator - No PW system). In plasma treated group, UVT% of water was improved clearly, and the number of heterotrophic bacteria decreased significantly after 40 days. Total weight gain of tilapia in PW system was significantly higher, and other growth indicators were also relatively higher although not statistically significant. In addition, the fish in PW system had a 100% survival rate, and there were no histological differences between fish from both systems. Fish did not seem to be affected by the toxicity of ROS. In conclusion, it is expected that plasma water can effectively deactivate fish pathogens and improve the quality of rearing water.

순환여과양식시스템(RAS)은 사육수를 여과하여 재사용하며 고밀도로 사육하는 양식 방법으로 수질관리 및 소독이 매우 중요하다. 병원체로 인한 질병 발생을 예방하고 수질 개선에 도움을 주기 위하여 최근 코로나 방전 플라즈마 처리수(plasma water, PW)를 이용한 사육수 소독법이 제안되었다. 본 연구에서는 플라즈마 발생장치를 설치한 순환여과시스템(처리구, PW system)과 설치하지 않은 순환여과시스템(대조구, No PW system)에서 40일 동안 틸라피아를 사육하면서 수질 변화 및 어체의 성장을 조사하였다. 이를 위해 10일 마다 물을 채수하여 UV 투과율과 일반 세균 수 변화를 측정하였고 틸라피아의 성장지표, 생존율 및 조직학적인 차이를 분석하였다. UV 투과율 실험 결과 처리구와 대조구는 실험 시작 시에(0일) 각각 74.1%, 74.8%를 나타냈으며, 40일째에 처리구는 91.8%로 증가한 반면 대조구는 65.2%로 감소하여 수중 유기물 감소 효과를 확인하였다. 일반 세균 수는 40일에 이르러 처리구(101.69 CFU/ml)에서 대조구(103.25 CFU/ml) 보다 유의하게 감소하였다(p<0.05). 틸라피아 성장차이 조사 결과 처리구는 대조구에 비해 총 증중량이 유의하게 높았으며(p<0.05), 다른 성장지표도 처리구가 상대적으로 높았으나 통계적으로 유의한 차이는 아니었다(p>0.05). 또한 처리구는 100%의 생존율을 보였으며, 조직학적으로 대조구와 차이가 나타나지 않았다. 따라서 플라즈마 처리수는 순환여과양식시스템 내 어류의 성장과 건강에 해를 끼치지 않고 수질 개선에도 효과가 있을 것으로 기대된다. 그러나 현장 적용 시에는 탈기수조의 설치 등 주의사항을 충분히 고려하여야 할 것이다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부의 재원으로 농림식품기술기획평가원의 농식품연구성과후속지원사업의 지원을 받아 연구되었음(818006-2).

References

  1. Ahmed MW, Choi S, Lyakhov K, Shaislamov U, Mongre RK, Jeong DK, Suresh R, Lee HJ. 2017. High-Frequency Underwater Plasma Discharge Application in Antibacterial Activity. Plasma Phys Rep 43: 381-392. https://doi.org/10.1134/S1063780X17030011
  2. Deng X, Shi J, Kong MG. 2006. Physical Mechanisms of Inactivation of Bacillus subtilis Spores Using Cold Atmospheric Plasmas. IEEE Trans Plasma Sci 34: 1310-1316. https://doi.org/10.1109/TPS.2006.877739
  3. Davidson J, Good C, Welsh C, Summerfelt S. 2011. The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems. Aquac Eng 44: 80-96. https://doi.org/10.1016/j.aquaeng.2011.04.001
  4. Hwang IH, Jeong JK, You TS, Jung JM. 2018. Water electrode plasma discharge to enhance the bacterial inactivation in water. Biotechnol Biotechnol Equip 32: 530-534. https://doi.org/10.1080/13102818.2017.1321969
  5. Jung SM, Park WG, Park JH, Kim JW, Kim PK. 2018. Growth Performance and Physiological Changes of Olive Flounder Paralichthys olivaceus by Concentration of Ozone Produced Oxidants in Semi-RAS. Korean J Fish and Aquat Sci 51: 688-696.
  6. Kim PK, Kim JW, Park JH. 2018. Hematological and histological changes of black porgy Acanthopagrus schlegeli in ozonated recirculating systems. Fish Aquatic Sci 21: 1-8. https://doi.org/10.1186/s41240-017-0078-4
  7. Lee KH, Jang KS, Kim SH, Park SW. 2013a. Performance assessment of apparatus for controlling algae bloom in aqua pet pank using by a cold plasma. J Kor Soc Fish Tech 49: 126-135. https://doi.org/10.3796/KSFT.2013.49.2.126
  8. Lee YS, Jeon HJ, Han HG, Cheong CJ. 2013b. Disinfective properties and ozone concentrations in water and air from an ozone generator and a low-temperature dielectric barrier discharge plasma generator. J Env Sci Intern 22: 937-944. https://doi.org/10.5322/JESI.2013.22.8.937
  9. Masser JP, Rakocy J, Losordo TM. 1999. Recirculating aquaculture tank production systems: management of recirculating systems. SRAC Publication, vol. 452.
  10. OIE (Office International des Epizooties). 2009. Methods for disinfection of aquaculture establishments. In Manual of Diagnostic Tests for Aquatic Animals.
  11. Park JH, Kim PK, Lim TH, Daniels HV. 2013. Ozonation in seawater recirculating systems for black seabream Acanthopagrus schlegelii (Bleeker): Effects on solids, bacteria, water clarity, and color. Aquac Eng 55: 1-8. https://doi.org/10.1016/j.aquaeng.2013.01.002
  12. Powell A, Chingombe P, Lupatsch I, Shields RJ, Lloyd R. 2015. The effect of ozone on water quality and survival of turbot (Psetta maxima) maintained in a recirculating aquaculture system. Aquac Eng 64: 20-24. https://doi.org/10.1016/j.aquaeng.2014.11.005
  13. Powell A, Scolding JWS. 2018. Direct application of ozone in aquaculture systems. Rev Aquac 10: 424-438. https://doi.org/10.1111/raq.12169
  14. Ritola O, peters LD, Livingstone DR, Lindstrom-Seppa P. 2002. Effects of in vitro exposure to ozone and/or hyperoxia on superoxide dismutase, catalase, glutathione and lipid peroxidation in red blood cells and plasma of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Res 33: 165-175. https://doi.org/10.1046/j.1365-2109.2002.00649.x
  15. Reiser S, Wuertz S, Schroeder JP, Kloas W, Hanel R. 2011. Risks of seawater ozonation in recirculation aquaculture - Effects of oxidative stress on animal welfare of juvenile turbot (Psetta maxima, L.). Aquat Toxicol 105: 508-517. https://doi.org/10.1016/j.aquatox.2011.08.004
  16. Sharrer MJ, Summerfelt ST. 2007. Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system. Aquac Eng 37: 180-191. https://doi.org/10.1016/j.aquaeng.2007.05.001
  17. Schroeder JP, Croot PL, Von Dewitz B, Waller U, Hanel R. 2011. Potential and limitations of ozone for the removal of ammonia, nitrite, and yellow substances in marine recirculating aquaculture systems. Aquac Eng 45: 35-41. https://doi.org/10.1016/j.aquaeng.2011.06.001
  18. Spiliotopoulou A, Rojas-Tirado P, Chhetri RK, Kaarsholm KMS, Martin R, Pedersen PB, Pedersen LF, Andersen HR. 2018. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems. Water Res 133: 289-298. https://doi.org/10.1016/j.watres.2018.01.032
  19. You JH, Lee JH, Mun SH, Kwon SR, Park TS, Kwon JY. 2020. Disinfection effect of corona discharged plasma water on fish pathogens. J Fish Pathol 33: 63-69.