Browse > Article
http://dx.doi.org/10.15207/JKCS.2021.12.1.243

Applying Rosen-type PZT plasma generation device for medical applications  

Lee, Kang-yeon (Dept. of Electrical Engineering, Chosun College of Science & Technology)
Jung, Byung-Geun (Dept. of Medical Laboratory Science, Seoyoung University)
Park, Jeong-sook (Dept. of Nursing, Nambu University)
Park, Ju-Hoon (Dept. of Electrical Engineering, Nambu University)
Jeong, Byeong-Ho (Dept. of Electrical Engineering, Nambu University)
Publication Information
Journal of the Korea Convergence Society / v.12, no.1, 2021 , pp. 243-250 More about this Journal
Abstract
In the medical field, applications of plasma are applied sterilize instruments mainly but with the advent of bio-plasma technology, the scope of application is expanding. Recently, In addition, high-density miniaturization with handheld is required for sophisticated procedures when irradiated directly or treated with non-standard conditions. Rosen-type PZT is a device with a structure that generates high voltage plasma by achieving voltage transformation through electro-mechanical coupling using piezoelectric effect.and is used in portable plasma generating devices as an advantage to increase energy density relatively. In this paper, Rosen-type PZT was modeled using equivalent circuits and was carried out and a plasma generating device for medical application was designed and prototype tested. Prototype plasma generating device generates an output voltage of 5.8 kV with 12V input power and is designed to operate at high voltage by applying the half-bridge topology power converter. The results of the study confirmed the availability of various medical devices, such as plasma jets or direct exposure equipment.
Keywords
Plasma; Rogen-type; Piezoelectric; Half bridge; Medical instrument;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Gan, S. Zhang, D. Poorun, D. Liu, X. Lu, M. He, X. Duan & H. Chen. (2018). Medical applications of nonthermal atmospheric pressure plasma in dermatology, JDDG, J. Deutschen Dermatol. Gesellschaft, 16(1), 7-13. DOI: 10.1111/ddg.13373   DOI
2 Y. Yang & L. Tang. (2009). Equivalent Circuit Modeling of Piezoelectric Energy Harvesters, JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 20, 2223-2235. DOI: 10.1177/1045389X09351757   DOI
3 C. Covaci & A. Gontean. (2020). Piezoelectric Energy Harvesting Solutions: A Review, Sensors 2020, 20, 1-37. DOI: 10.3390/s20123512   DOI
4 A. Bybi, H. Drissi, M. Garoum & A. C. Hladky-Hennion. (2019). One-Dimensional Electromechanical Equivalent Circuit for Piezoelectric Array Elements. Advances in Science. Technology & Innovation, 3-9. DOI: 10.1007/978-3-030-05276-8_1   DOI
5 M. Babija, T. Gotszalka, Z.W. Kowalskia, K. Nitscha, J. Silberringb & M. Smoluchb (2014). Atmospheric Pressure Plasma Jet for Mass Spectrometry. Proc. of the 8th International Conference NEET 2013, Zakopane, Poland, 1821-2013. DOI: 10.12693/APhysPolA.125.1260   DOI
6 M. J. Johnson, D. R. Boris, T. B. Petrova & S. G. Walton. (2019). Characterization of a Compact, Low-Cost Atmospheric-Pressure Plasma Jet Driven by a Piezoelectric Transformer. IEEE Transactions on Plasma Science. 47(1), 434-444. DOI: 10.1109/TPS.2018.2870345   DOI
7 C. Nadal, F. Pigache & J. Erhart. (2016). Modeling of a Ring Rosen-Type Piezoelectric Transformer by Hamilton's Principle. Actuators 2016, 5-12. DOI: 10.1109/TUFFC.2014.006719   DOI
8 PIEZO TECHNOLOGY. (2002). Piezoelectric Ceramic Products FUNDAMENTALS, CHARACTERISTICS AND APPLICATIONS, PI Ceramic GmbH. https://www.piceramic.com/
9 D. Vasic, F. Costa & E. Sarraute. (2006). Piezoelectric Transformer for Integrated MOSFET and IGBT Gate Driver. IEEE TRANSACTIONS ON POWER ELECTRONICS, 21(1), 56-65. DOI: 10.1109/TPEL.2005.861121   DOI
10 G. Spiazzi & S. Buso (2004), Analysis of Instabilities in Piezoelectric Transformers Driving Cold Cathode Fluorescent Lamps. 2004 35th Annual IEEE Power Electronics Specialists Conference. 2725-2730. DOI: 10.1109/PESC.2004.1355263   DOI
11 S. J. Choi, K. C. Lee & B. H. Cho. (2005). Design of Fluorescent Lamp Ballast With PFC Using a Power Piezoelectric Transformer. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 52(6). 1573-1581. DOI: 10.1109/TIE.2005.858726   DOI
12 M. S. Roedgaard, M. Weirich & M. A. E. Andersen. (2011). Forward Conduction Mode Controlled Piezoelectric Transformer based PFC LED Drive. IEEE transactions on power electronics, 28(10), 4841-4849. DOI: 10.1109/TPEL.2012.2233499   DOI
13 M. S. Rodgaard, T. Andersen, M. A. E. Andersen & K. S. Meyer. (2012). Design of Interleaved Interdigitated Electrode Multilayer Piezoelectric Transformer utilizing Longitudinal and Thickness Mode Vibrations. IEEE International Conference on Power and Energy (PECon), 2-5. DOI: 10.1109/PECon.2012.6450243   DOI
14 P. Anipireddy1 & C. Babu. (2014). Modeling and Simulation of Three Level Piezoelectric Transformer Converters. Anipireddy and Babu, Adv Robot Autom 2013, 3(2). DOI: 10.4172/2168-9695.1000120   DOI
15 C. Tendero, C. Tixiera, P. Tristanta, J. Desmaisona & P. Leprince. (2006). Atmospheric pressure plasmas: A review, Atomic Spectroscopy, 61(1), 2006, 2-30. https://doi.org/10.1016/j.sab.2005.10.003   DOI