In this paper we propose a user adaptive post-processing method to improve the accuracy of speaker dependent, isolated word speech recognition, particularly for mobile devices. Our method considers the recognition result of the basic recognizer simply as a high-level speech feature and processes it further for correct recognition result. Our method learns correlation between the output of the basic recognizer and the correct final results and uses it to correct the erroneous output of the basic recognizer. A multi-layer perceptron model is built for each incorrectly recognized word with high frequency. As the result of experiments, we achieved a significant improvement of 41% in recognition accuracy (41% error correction rate).
The Journal of Korean Institute of Communications and Information Sciences
/
v.17
no.11
/
pp.1199-1205
/
1992
In this paper, a Korean word recognition method which usese Neural Network and Hidden Markov Models(HMM) is proposed to improve a recognition rate with a small amount of learning data. The method reduces the fluctuation due to personal differences which is a problem to a HMM recognition system. In this method, effective recognizer is designed by the complement of each recognition result of the Hidden Markov Models(HMM) and Neural Network. In order to evaluate this model, word recognition experiment is carried out for 28 cities which is DDD area names uttered by two male and a female in twenties. As a result of testing HMM with 8 state, codeword is 64, the recognition rate 91[%], as a result of testing Neural network(NN) with 64 codeword the recognition rate is 89[%]. Finally, as a result of testing NN-HMM with 64 codeword which the best condition in former tests, the recognition rate is 95[%].
This paper proposes two methods of estimating prior distribution to improve the performance of rapid speaker adaptation based on maximum a posteriori linear regression (MAPLR). In general, prior distribution of the transformation matrix used in MAPLR adaptation is estimated from all of the training speakers who are employed to construct the speaker-independent model, and it is applied identically to all new speakers. In this paper, we propose a method in which prior distribution is estimated from a group of reference speakers, selected using adaptation data, so that the acoustic characteristics of the selected reference speakers may be similar to that of the new speaker. Additionally, in MAPLR adaptation with block-diagonal transformation matrix, we propose a method in which the mean matrix and covariance matrix of prior distribution are estimated from two groups of transformation matrices obtained from the same training speakers, respectively. To evaluate the performance of the proposed methods, we examine word accuracy according to the number of adaptation words in the isolated word recognition task. Experimental results show that, for very limited adaptation data, statistically significant performance improvement is obtained in comparison with the conventional MAPLR adaptation.
본 논문에서는 잡음이 존재하는 환경에 강인한 것으로 알려져 있는 투영 방법을 우 도 측정에 가중 함수와 결합하여 사용하는 방법을 제안하였다. 반연속 HMM을 이용한 고립 단어의 인식 실험 결과, 제안한 방법이 실험에 사용된 잡음의 환경들에서 모두 좋은 성능을 나타내었다. 아울러 병렬 모델 결합 방법을 반연속 HMM에 적용하였는데 이는 코드북의 변 환반으로 쉽게 잡음의 특성을 반영할 수 있다. 가중 투영 우도 측정 방법을 병렬 모델 결합 방법에 적용한 경우에도 우수한 성능을 거둘 수 있었다.
When we apply MLPs(multilayer perceptrons) to pattern classification problems, we generally allocate one output node for each class and the index of output node denotes a class. On the contrary, in this paper, we propose to increase the number of output nodes per each class for performance improvement of MLPs. For theoretical backgrounds, we derive the misclassification probability in two class problems with additional outputs under the assumption that the two classes have equal probability and outputs are uniformly distributed in each class. Also, simulations of 50 isolated-word recognition show the effectiveness of our method.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.357-359
/
2000
음소 단위로 구축된 음성 데이터는 음성인식, 합성 및 분석 등의 분야에서 매우 중요하다. 일반적으로 음소는 유성음과 무성음으로 구분되어 진다. 이러한 유성음과 무성음은 많은 특징적 차이가 있지만, 기존의 음소 경계추출 알고리즘은 이를 고려하지 않고 시간 축을 기준으로 이전 프레임과 매개변수 (스펙트럼) 비교만을 통하여 음소의 경계를 결정한다. 본 논문에서는 음소 경계 추출을 위하여 유성음과 무성음의 특징적 차이를 고려한 블록기반의 Branch 알고리즘을 설계하였다. Branch 알고리즘을 사용하기 위한 스펙트럼 비교 방법은 MFCC(Mel-Frequency Cepstrum Coefficient)를 기반으로 한 거리 측정법을 사용하였고, 유성음과 무성음의 구분은 포만트 주파수를 이용하였다. 실험 결과 3~4음절 고립단어를 대상으로 약 78%의 정확도를 얻을수 있었다.
In this paper, a modified clustering algorithm is proposed to improve the discrimination of discrete HMM(Hidden Markov Model), so that it has increased recognition rate of 2.16% in comparison with the original HMM using the K-means or LBG algorithm. And, for preventing the decrease of recognition rate because of insufficient training data at the training scheme of HMM, a modified probabilistic smoothing method is proposed, which has increased recognition rate of 3.07% for the speaker-independent case. In the experiment applied the two proposed algorithms, the average rate of recognition has increased 4.66% for the speaker-independent case in comparison with that of original VQ/HMM.
The Transactions of the Korea Information Processing Society
/
v.6
no.4
/
pp.1129-1135
/
1999
isolated word recognition using the Dynamic Time warping algorithm has shown good recognition rate on speaker dependent environment. But, practically, since the searching time of the dynamic Time Warping algorithm is rapidly increased as searching data is increased. it is hard to implement. In the context-dependent-short-query system such as educational children's workbook on the Web, the number of responses to the specific questions is limited. Therefore, the searching space for the answers can be reduced depending on the questions. In this paper, low cost implementation method using DTW for the Web has been proposed. To cover the weakness of DTW, the searching space is reduced by the context. the searching space, depends on the specific questions, is chosen from interest searchable candidates. In the real implementation, the proposed method show better performance of both time and recognition rate.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.381-384
/
1998
본 논문은 주행중인 자동차 환경에서 운전자의 안전성 및 편의성의 동시 확보를 위하여, 보조적인 스위치 조작없이 상시 음성의 입, 출력이 가능하도록 한다. 이때 잡음에 강인한 threshold 값을 구하기 위하여, 일정한 시간마다 기준 에너지와 영교차율(Zero Crossing Rate)을 변경하며, 밴드패스 필터(bandpass filter)를 이용하여 1차, 2차로 나누어 실시간 상태에서 자동으로, 정확하게 끝점검출(End Point Detection)을 처리한다. 기준패턴(reference pattern)은 DMS(Dynamic Multi-Section)을 사용하며, 화자의 변별력을 높이기 위하여 2개의 모델사용을 제안한다. 또한 주행중인 차량의 잡음환경에 강인하기 위하여 일반주행(80km/h 이내), 고속주행(80km/h 이상)등으로 나누며 차량의 가변잡음 크기에 따라 자동으로 선택하도록 한다. 음성의 특징 벡터와 인식 알고리즘은 PLP 13차와 One-Stage Dynamic Programming (OSDP)를 이용한다. 실험결과, 자주 사용되는 차량 편의장치 제어명령 33개에 대하여 중부, 영동 고속도로(시속 80Km/h 이상)에서 화자독립 89.75%, 화자종속 90.08%의 인식율을 구하였으며, 경부 고속도로에서는 화자독립 92.29%, 화자종속 92.42%의 인식율을 구하였다. 그리고 저속 주행중인 자동차 환경(80km/h 이내, 시멘트, 아스팔트 등의 서울시내 및 시외독립)에서는 화자독립 92.89%, 화자종속 94.44% 인식율을 구하였다.
In this paper. we propose a method of confidence measure fusion under Bayesian framework for speech recognition. Centralized and distributed schemes are considered for confidence measure fusion. Centralized fusion is feature level fusion which combines the values of individual confidence scores and makes a final decision. In contrast. distributed fusion is decision level fusion which combines the individual decision makings made by each individual confidence measuring method. Optimal Bayesian fusion rules for centralized and distributed cases are presented. In isolated word Out-of-Vocabulary (OOV) rejection experiments. centralized Bayesian fusion shows over 13% relative equal error rate (EER) reduction compared with the individual confidence measure methods. In contrast. the distributed Bayesian fusion shows no significant performance increase.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.