• Title/Summary/Keyword: 고도산화공정

Search Result 94, Processing Time 0.029 seconds

Study on Treatment Characteristic of Advanced Oxidation Process using Ozone Oxidation and Peroxone AOP Process for Waste Dyeing Water Effluent Treatment (오존접촉산화 공정과 Peroxone AOP 공정을 이용한 염색폐수방류수 고도산화 처리특성 연구)

  • Park, Jun-Hyung;Shin, Dong-Hoon;Ryu, Seong-Han;Jo, Seog-Jin;Lee, Sang-Hun
    • Textile Coloration and Finishing
    • /
    • v.23 no.4
    • /
    • pp.274-283
    • /
    • 2011
  • Effect of pH on ozone oxidation and peroxone AOP(Advanced Oxidation Process) process was analyzed and the optimal efficiency for both processes was obtained at pH 7.5. In case of ozone oxidation process, the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were measured to 93%, 70% and 89% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90 min(ozone dosage of 201mg/$\ell$), the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were increased by 3~5 %, indicating that the increment of removal efficiency was insignificant considering longer reaction time. Similarly, the ozone/$H_2O_2$ ratio was optimized to 0.5 for peroxone AOP process. Removal efficiencies of color, $COD_{Mn}$ and $BOD_5$ were measured 95%, 81% and 94% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90min(ozone dosage of 201mg/$\ell$), the removal efficiency of color, CODMn, and BOD5 increased slightly by 1~5%.

Use of Hydrogen Peroxide with Ozone to Simultaneously Reduce MIB and Quench Ozone Residual in Existing Water Treatment Plants Sourcing Water from the Han River (한강을 원수로 하는 오존/과산화수소 고도정수처리공정에서의 MIB제거 및 잔류오존 농도에 관한 연구)

  • McAdams, Stephen R.;Koo, Bon Jin;Jang, Myung Hoon;Lee, Sung Kyoo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.704-716
    • /
    • 2012
  • This paper provides a detailed account of pilot testing conducted at South Lake Tahoe (California), the Ddukdo (Seoul) water treatment plant (WTP) and the Bokjung (Seongnam) WTP between February, 2010, and February, 2012. The objectives were first, to characterize the reactions of ozone with hydrogen peroxide (Peroxone) for Han River water following sand filtration, second to determine empirical ozone and hydrogen peroxide doses to remove a taste-and-odor surrogate 2-methylisoborneol (MIB) using an advanced oxidation process (AOP) configuration and third, to determine the optimum dosing configuration to reduce residual ozone to a safe level at the exit of the process. The testing was performed in a real-time plant environment at both low- and high seasonal water temperatures. Experimental results including ozone decomposition rates were dependent on temperature and pH, consistent with data reported by other researchers. MIB in post-sand-filtration water was spiked to 40-50 ng/L, and in all cases, it was reduced to below the specified target level (7 ng/liter) and typically non-detect (ND). It was demonstrated that Peroxone could achieve both MIB removal and low effluent ozone residual at ozone+hydrogen peroxide doses less than those for ozone alone. An empirical predictive model, suitable for use by design engineers and operating personnel and for incorporation in plant control systems was developed. Due to a significant reduction in the ozone reaction/decomposition at low winter temperatures, results demonstrate the hydrogen peroxide can be "pre-conditioned" in order to increase initial reaction rates and achieve lower ozone residuals. Results also indicate the method, location and composition of hydrogen peroxide injection is critical to successful implementation of Peroxone without using excessive chemicals or degrading performance.

Effect of Ozonation on Cross-flow Filtration of Polysulfone Ultrafiltration Membrane (폴리설펀 한외여과막공정에서 오존의 영향)

  • 박영규
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.179-189
    • /
    • 2001
  • Effect of ozonation on permeate flux was studied by using polysulfone ultrafiltration membrane. The filtration was first carried out by permeating phenol solutions under 3$kg_{f}$/$cm^2$ until steady-state flux was obtained. Then, the ozone of concentration range between 10 and 45 mg/1.min was ozonated in water for reducing the fouling on the UF membrane. Treatment of chemical wastewater by combined ozone and membrane filtration methods was also investigated for the final purpose. The Fenton method assisted by chemical coagulation was employed as a prtreatment method and found to be highly efficient in removing a large amount of organic compounds. And it was found that the ozonation made the permeate flux enhance in the phenol solution and phenolic-chemical wastewaster by 10% and oxidation by ozone and hydrogen peroxide was more effective. Evidence was presented that TMP decreased in more ozone concentrated water and it was found that the ozone-mediated membrane would have a limited role to prevent the membrane fouling rather than to eliminate fully.

  • PDF

Effect of Drinking Water Treatment by DOF(Dissolved Ozone Flotation) System (DOF 공정에 의한 정수처리 효과)

  • Lee, Byoung-Ho;Song, Won-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.743-750
    • /
    • 2008
  • In water treatment plant the Dissolved Ozone Flotation(DOF) System may be employed because this system has various abilities, such that it can remove SS using microbubbles, and it can exert strong oxidation power in removing taste and odor, color, and microbial agents. In order to investigate effectiveness of the DOF system in water treatment, removal characteristics of various water quality parameters were observed depending on the different levels of ozone concentrations. Removal efficiencies of water quality parameters in DOF system were compared with those in DAF(Dissolved Air Flotation) system and in CGS(Conventional Gravity Settling) system. Optimum ozone dose obtained in the pilot experiments was 2.7 mg/L. With increasing ozone dose higher than 2.7 mg/L, removal rates of turbidity, KMnO$_4$ consumption, UV$_{254}$ absorbance, and TOC were reversely lowered. High concentration of ozone dissociate organic matter in water, so that increasing dissolved organic level in effluent. Removal rates of water quality parameters at optimum ozone dose were obtained, such that removal rates of turbidity, KMnO$_4$ consumption, TOC, and UV$_{254}$ asorbance were 88.9%, 62.9%, 47%, and 77.3% respectively. Removal rate of THMFP was 51.6%. For all the parameters listed above, the DOF system was more effective than the DAF system or the CGS system. It is found that the DOF system may be used in advanced water treatment not only because the DOF system is more efficient in removing water quality parameters than the existing systems, but because the DOF system is also required smaller area than the CGS system for the treatment plant.

Statistical Characteristics of Diazinon Degradation using E-beam (전자빔을 이용한 통계적 Diazinon 분해특성 연구)

  • Lee, Sijin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.57-63
    • /
    • 2013
  • In this study, the characteristics of degradation and mineralization of diazinon using a statistical approach based on Box-Behnken design (BBD, one of response surface method) was investigated in an E-beam process, and also the main factors with diazinon concentration ($X_1$), irradiatin intensity ($X_2$) and pH ($X_3$) which consisted of 3 levels in each factor was set up to determine the effects of factors and optimization. At first, effects of pH and diazinon concentration were investigated to determine the proper range of application on response surface method(RSM). In statistical approach, the regression analysis and analysis of variance (ANOVA) were applied to evaluate the quantitative comparison of each factors in order to obtain the effects were irradiation intensity>diazinon concentration>pH. The regression model predicted the optimization point using the response optimizer to consider the effects of operation conditions were $Y_1=81.73-5.58X_1+23.69X_2-14.23X{_2}^2+4.22X{_3}^2(R^2=99.7%)$, $Y_2=35.23-3.01X_1+10.79X_2-7.58X_2{^2}(R^2=97.9%)$ and 95.7% of diazinon degradation, 41.8% of TOC reduction at 12.75mg/L and 4.26kGy, respectively. The pH condition was not significantly affects on E-beam process than other advanced oxidation processes (AOPs).

Phosphorus Removal from Advanced Wastewater Treatment Process Using PAC (PAC를 이용한 하수의 고도처리공정에서의 인 제거)

  • Park, Wan-Cheol;Lee, Mi-Ae;Sung, Il-Wha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • To meet the reinforced discharge standards, effect of coagulant PAC (Poly aluminium chloride, 10.4% as $Al_2O_3$) on phosphorous removal in advanced wastewater treatment process (a modified $A^2$/O). 15 mg/L of PAC determined by jar-test was added to influent of settling basin in a modified $A^2$/O consists of anaerobic, anoxic, and oxic chamber which contains Bio-clod and porous polyurethane media. Performance of PAC was tested by supernatant after settling. The removal efficiencies of BOD, COD, TP (total phosphorus) and SP (soluble phosphorus) on biological process with PAC were 96.1%, 88.8%, 97.0% and 98.6%, compared with those on biological process without PAC were 95.4%, 72.4%, 71.6% and 59.5% respectively. 18.4% of TP and 39.1% of SP removal efficiency was increased, although increase of BOD and COD removal rate was not significant. Only PAC addition to influent of settling basin in $A^2O$ process can help total phosphorus removal to 0.13 mg/L with following discharge standard.

A Study on the degradation of Lindane in water by a Photo-Fenton process and a UV/$H_2O_2$ process (Photo-Fenton 공정과 UV/$H_2O_2$ 공정을 이용한 Lindane의 분해특성 비교 연구)

  • Lee, Ju-Hyun;Choi, Hye-Min;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2010
  • In the present study, the degradation characteristics of Lindane by Advanced Oxidation Processes(UV/$H_2O_2$, Photo-Fenton process) were studied. The degradation efficiency of Lindane in aqueous solution was investigated at various initial pH values, Fenton's reagent concentrations and initial concentrations of Lindane. GC-ECD was used to analyze lindane. Lindane has not been degraded without application of AOPs over two hours. But, approximately 5% of lindane was degraded with UV or $H_2O_2$ alone. Lindane with UV/$H_2O_2$ process showed approximately 7% higher removal efficiency than $H_2O_2$ process. In the UV/$H_2O_2$ process, the pH values did not affect the removal efficiency. The optimal mole ratio of $H_2O_2/Fe^{2+}$ for lindane degradation is about 1.0 in Photo-Fenton process. Also, the experimental results showed that lindane removal efficiency increased with the decrease of initial concentration of lindane. Under the same conditions, the order lindane of removal efficiency is as following : Photo-Fenton process > UV/$H_2O_2$ process > $H_2O_2$ process. In addition, intermediate products were identified by GC-MS techniques. Than PCCH(Pentachlorocyclohexene) was identified as a reaction intermediate of the Photo-Fenton process.

Detection and Determination of the Peroxyl Radical in the Photolysis with TiO2 (TiO2와의 광반응하에서 생성되는 페록시라디칼(HO2・/O2-)의 검출 및 정량화)

  • Kwon, Bumgeun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.45-49
    • /
    • 2010
  • We have developed and demonstrated the use of a new kinetic method as an analytical tool for the measurement of $HO_2{\cdot}/O_2{\cdot}^-$. This new method is based on the reduction of $Fe^{3+}$-Ethylene Diamine Tetra Acetate, EDTA) into $Fe^{2+}$-EDTA by $HO_2{\cdot}/O_2{\cdot}^-$ and the well-known Fenton-like reaction of $H_2O_2$ and $Fe^{2+}$-EDTA to yield the hydroxyl radicals ($OH{\cdot}$). Since this method for $HO_2{\cdot}/O_2{\cdot}^-$ shows high sensitivity and allows a simple calibration system, it can contribute significantly to understanding the basic functions of $HO_2{\cdot}/O_2{\cdot}^-$ in advanced oxidation processes for water treatment. Moreover, the present technique has the advantage of using inexpensive and easily available nonenzymatic reagents and of being insensitive to the moderate concentration of possible interferences often found in aqueous phase.

Degradation and Ecotoxicity Reduction of Reactive Dye by Using Advanced Oxidation Process (고도산화공정을 이용한 반응성 염료의 제거 및 생태독성 저감)

  • Seo, Kyung Ae;Park, Jae Hong;Jung, Soo Jung;Lim, Byung Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.204-211
    • /
    • 2013
  • In this study, the deriving optimum conditions for decolorization of Acid Orange II solution was carried using $TiO_2$ advanced oxidation process. After that, on base of the deriving results, the range of dye concentration was estimated. In addition, acute toxicity test was also carried to assess toxicity unit according to decolorization and TOC removal. In case of the blockage of light, 20 mg/L of dye solution, and 0.5 g $TiO_2$, the effect of decolorization at pH 3 was larger than at pH 6 and 10, so it was shown that decolorization is dependent on pH. The use of 5 g $TiO_2$ showed best performance of decolorization, but that of 3 g $TiO_2$ was chosen to optimum condition in considering of economical aspects. Four light sources, sun, fluorescent lamp, BLB lamp, and UV-B lamp, were used and decolorization was 99.4% and 100% at 50 mg/L, 98.6% and 99.7% at 100 mg/L for sun and UV-B lamp, respectively. In spite of the optimum condition of decolorization at pH 3, the evaluation of acute toxicity test showed highly toxic. In conclusion, although the optimum treatment of dye solution is performed, water ecology can be polluted in discharging it into water system. Therefore, it is needed to study of water ecological system with dye water treatment, and it takes all the circumstances into consideration.

Treatment of Phenol Contaminated Soil Using Sulfidated Zero-Valent Iron as a Persulfate Activator for Advanced Oxidation Process (황화영가철 기반의 과황산 고도산화공정을 이용한 페놀 오염토양 처리)

  • Hyuk Sung Chung;Nguyen Quoc Bien;Jae Young Choi;Inseong Hwang
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • A persulfate(PS)/sulfidated microscale zero-valent iron(S-mZVI) system was tested for treating a soil contaminated with phenol. Sulfidation of bare mZVI was conducted using a mechanochemical process utilizing a ball mill in order to improve persulfate activation capacity and stability of unmodified mZVI. The synthesized S-mZVI performed markedly better than the bare mZVI in activating PS. The optimum molar ratio of sulfur to mZVI was around 0.12. In the soil slurry experiments, a very rapid and complete removal of phenol was observed at the optimum molar ratios of PS to S-mZVI of 2:1 and PS to phenol of 16:1. The phenol removal efficiencies decreased as the water content of the slurries decreased. This was believed to be due to increased soil oxidant demand as the amount of soil was increased as relative to the water content. To evaluate the field applicability of the process, slurry experiments adopting high soil contents were carried out that simulated in-situ soil mixing conditions. These experiments resulted in substantially compromised degradation efficiencies of 54.3% and 43.8% within 4 hours. The current study generally shows that the PS/S-mZVI process has a potential to be developed into a remediation technology for soils contaminated with organics.