• Title/Summary/Keyword: 고결성

Search Result 135, Processing Time 0.024 seconds

Strength Variation of Cemented Sand Due to Wetting (수침이 고결모래의 강도에 미치는 영향)

  • Park, Sung-Sik;Kim, Ki-Young;Kim, Chang-Woo;Choi, Hyun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.303-311
    • /
    • 2009
  • In this study, weakly cemented sand was cured at air dry condition with different periods (3, 7, 14, 21, 28 days) and its unconfined compressive strength was evaluated. As a result, the strength of specimens with low cement ratios such as 4 and 8% increases until 7 days curing but, after 7 days, their strength continuously decreases. The strength of specimens with relatively high cement ratios such as 12 and 16% increases up to 7 days curing and then stays almost constant until 21 days. After 21 days curing, their strength suddenly dropped down, which is much lower than the strength of 3 days curing specimen. A cemented sand and gravel called CSG, which is highly permeable, could be exposed to repetitive drying and wetting conditions due to rainfall or groundwater table change during curing. In this study, the weakly cemented sand is exposed to repetitive drying and wetting and then its unconfined compressive strength was evaluated. As a result, the strength of a specimen with 27 days drying condition following 1 day wetting was at maximum 35% lower than the one cured under 28 days drying. The strength degradation due to wetting decreases as a cement ratio increases. However, the strength of a specimen with repetitive drying and wetting increases as the number of wetting increases until 3 cycles. After 3 cycles of drying and wetting, the rate of strength increase decreases due to an insufficient water for hydration or stays constant. If the sufficient water supply is provided to cemented sand during curing, the target or design strength increase can be achieved. Otherwise, the strength degradation due to wetting should be considered at the design stage.

A Study on Fiber Reinforced Cement using PVA and Carbon Fiber (PVA와 탄소섬유를 이용한 섬유강화시멘트에 관한 연구)

  • 김민영;이준석;김종원;이동률
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.67-69
    • /
    • 2003
  • 콘크리트는 경제성과 압축강도, 내구성 및 강성 등의 우수한 물성을 가지고 있으나 인장, 휨 및 충격강도가 낮고 에너지 흡수능력이 작아 취성적이며 균열에 대한 저항성이 작은 단점을 가지고 있다. 이러한 단점을 개선하기 위해서 각종 섬유를 콘크리트에 분산시켜 만든 섬유보강시멘트(FRC : Fiber Reinforced Cement)의 개발 및 이용이 활발히 진행되고 있다. PVA 섬유는 우수한 선형성, 입체구조의 간략함과 규칙성, 고결정성 그리고 우수한 접착성을 가지며, 유기 고분자로는 유일하게 PH 13.5이상의 격렬한 알칼리 조건에서도 거의 손상되지 않는 우수한 내알칼리성을 가지고 있다. (중략)

  • PDF

Effect of Void Formation on Strength of Cemented Material (고결 지반 내에 형성된 공극이 강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.109-117
    • /
    • 2010
  • Gas hydrate dissociation can generate large amounts of gas and water in gas hydrate bearing sediments, which may eventually escape from a soil skeleton and form voids within the sediments. The loss of fine particles between coarse particles or collapse of cementation due to water flow during heavy or continuous rainfall may form large voids within soil structure. In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Glass beads with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Glass beads were mixed with 2% cement ratio and 7% water content and then compacted into a cylindrical sample with five equal layers. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle, and embedded into the middle of five equal layers. The number, direction, and length of capsules embedded into each layer vary. After two days curing, a series of unconfined compression tests is performed on the capsule-embedded cemented glass beads. Unconfined compressive strength of cemented glass beads with capsules depends on the volume, direction and length of capsules. The volume and cross section formed by voids are most important factors in strength. An unconfined compressive strength of a specimen with large voids decreases up to 35% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments in the long term after dissociation and loss of fine particles within soil structure.

A Study on Soil Improvement Effects under Poor Ground Conditions (열악한 지반조건에서 고질공법의 지반보강효과 증대에 관한 연구)

  • 천병식;최기성
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.115-132
    • /
    • 1996
  • Several soil improvement methods are applied to stabilize soft ground. But, their improvement effects are known to be reduced in view of strength and durability under poor conditions such as marine clay and the ground with the flow of groundwater. The soil improvement method is generally classified as mixing(high pressure) type and injection type, and in this study, for successflll'applications of gelling methods, first in case that mixing method with cement is applied to marine clay, the causes of strength inferiority of treated soil are analyzed, and the effectiveness of improvement is studied, second in case that injection method with water-glass chemical grouts is applied to the ground with the flow of groundwater, soil improvement effects and durability of grouted soil are studied.

  • PDF

Analysis and Properties of Poly(ethylene 2,6-naphthalate) Copolymer Using Poly(ethylene glycol) (폴리에틸렌글리콜을 이용한 폴리에틸렌나프탈레이트 공중합체의 분석 및 특성)

  • 손준식;지동선
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.343-344
    • /
    • 2003
  • 폴리에틸렌 나프탈레이트(PEN)는 열적 및 물리적 특성이 우수한 고분자로서 포장재료, 필름, tire cord 등으로 그 이용범위가 확대되고 있는 고분자이다[l]. 그러나 강직한 분자사슬을 가지고 있는 PEN은 고결정성과 소수성 둥으로 인해 흡습성, 제전성 및 염색성이 좋지 못하고 성형가공이 어려운 단점도 있다. 이미 동종계열인 PET의 경우 그러한 단점을 개선하고자 합성반응시 diol과 같은 제 3의 단량체를 사용하여 공축합하는 연구[2-3]가 시도된바 있으나 PEN의 경우 아직 이에 관한 연구보고가 없는 실정이다. (중략)

  • PDF

Bearing Capacity Evaluation of Marine Clay Dredged Deposit Including Desiccated Crust Layer (건조 고결층이 형성된 준설 매립 지반의 지지력 산정에 대한 연구)

  • Park, Hyun-Ku;Byeon, Wi-Yong;Jee, Sung-Hyun;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.89-100
    • /
    • 2007
  • In this study, various field and laboratory tests were performed to investigate the characteristics of shear strength and bearing behavior to be considered in the estimation of stability and trafficability in early stage of stabilization process in marine clay dredged deposit. Site characterization was carried out to grasp the basic properties of the deposit. Field vane test, unconfined compression test and direct shear test were conducted to evaluate the shear strength distribution for varied depths, and the characteristics of shear strength and stress-strain behavior of the crust layer. Plate load tests were also performed to estimate the bearing capacity and to assess load-settlement behavior and failure pattern of the deposit. The bearing capacity was also estimated using previously proposed methods for double-layered clay deposit. The estimated bearing capacity was compared with the results of the plate load tests and then, the applicability of the estimation method was discussed.

The Injection Characteristics and Environmental Effects for Grouting Materials Based on Cement (시멘트계 주입재 종류별 주입 특성 및 환경적 영향 연구)

  • 천병식;이재영;서덕동
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.159-170
    • /
    • 2003
  • In this study, the mixed design of grout with hish strength.high permeation.high durability and environmental stability as the state of the art in material field was performed. Also, the subjects of grouting, grouting effects for ground conditions, and environmental effects were analyzed. According to these results, the fundamental data will be suggested as a design of grouting in the field application. The physical, mechanical and chemical characteristics with particle shape of the grouts were analyzed. Then, the gel-time of grouts, which is essential for workability and permeation range, were controlled. Also, the laboratory model grouting tests were performed to find the characteristics of solidification, permeation and durability with grouts. The ordinary portland, slag and microcement which have been used in the construction field were evaluated fur the environmental effects. To find the leaching of $Cr^{6+}$characteristics in cement grouts, $Cr^{6+}$ leaching tests were performed for the raw materials. Also, the results of leaching test were shorn by surrounding environment. Then, the unconfined compression strength tests were performed with the homo-gel samples, and the amount of changed $Cr^{6+}$ was measured by curing solution.

합성 방법에 따른 PET-PEG 블록 공중합체의 생성효율

  • 박영효;최경림;조창기
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.80-84
    • /
    • 1998
  • Poly(ethylene terephthalate)(PET)는 물리적, 기계적 성질이 우수한 고결정성 고분자의 하나로 섬유, 필름 및 여러 가지 용도로 다양하게 사용되고 있으나, 일반적으로 흡습성, 난연성 및 염색성 등이 좋지 않은 결점이 있다. 따라서 이러한 결점을 개선하기 위하여 PET 자체의 성질을 개선하거나 다른 고분자와의 공중합 또는 블렌딩하는 방법, 첨가제의 도입, 그래프팅 등 PET의 개질 연구가 많이 수행되고 있으나 대표적인 방법으로 합성반응시 공단량체를 사용하여 공중합체를 제조하는 것이 널리 알려져 있다.(중략)

  • PDF

A Study on Cementation of Sand Using Blast Furnace Slag and Extreme Microorganism (고로슬래그와 극한미생물을 이용한 모래의 고결화 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu;Nam, In-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • In this study, a blast furnace slag having latent hydraulic property with an alkaline activator for resource recycling was used to solidify sand without using cement. Existing chemical alkaline activators such as $Ca(OH)_2$ and NaOH were used for cementing soils. An alkaliphilic microorganism, which is active at higher than pH 10, is tested for a new alkaline activator. The alkaliphilic microorganism was added into sand with a blast furnace slag and a chemical alkaline activator. This is called the microorganism alkaline activator. Four different ratios of blast furnace slag (4, 8, 12, 16%) and two different chemical alkaline activators ($Ca(OH)_2$ and NaOH) were used for preparing cemented specimens with or without the alkaliphilic microorganism. The specimens were air-cured for 7 days and then tested for the experiment of unconfined compressive strength (UCS). Experimental results showed that as a blast furnace slag increased, the water content and dry density increased. The UCS of a specimen increased from 178 kPa to 2,435 kPa. The UCS of a specimen mixed with $Ca(OH)_2$ was 5-54% greater than that with NaOH. When the microorganism was added into the specimen, the UCS of a specimen with $Ca(OH)_2$ decreased by 11-60% but one with NaOH increased by 19-121%. The C-S-H hydrates were found in the cemented specimens, and their amounts increased as the amount of blast furnace slag increased through SEM analysis.

Numerical Analysis for the Geological Engineering Characteristics of Unconsolidated Sediment (미고결 퇴적물의 지질공학적 특성에 대한 수치해석적 연구)

  • CHO Tae-Chin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.215-224
    • /
    • 1990
  • Finite element model capable of solving coupled deformation-fluid diffusion equations for the fully saturated porous medium was developed using Galerkin's residual method. This model was used to study the mechanical and hydraulic behaviors of unconsolidated sediment near South Harbor, Pusan. The vertical displacement of top surface clay sediment, when subjected to the external load, is significantly affected by the excessive pore pres- sure buildup and its decay due to the pore fluid diffusion. The sand deposit overlain by the much less permeable clay layer serves as a flow channel. Consequently, the fluid diffusion due to pore pressure difference is significantly facilitated, which also affects the diffusion-dependent sediment deformation.

  • PDF