• 제목/요약/키워드: 고객 세그먼트

검색결과 9건 처리시간 0.028초

머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로 (A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service)

  • 윤상혁;최윤진;이소현;김희웅
    • 경영정보학연구
    • /
    • 제22권4호
    • /
    • pp.75-92
    • /
    • 2020
  • 인구 및 세대 구조가 변화면서 점차 대면 관계를 꺼리는 고객의 태도 변화가 정보기술의 발달과 스마트폰의 확산으로 더욱 커지고 있다. 이는 정보기술에 익숙해진 현대 고객들의 소비패턴인 효율성 및 신속성과도 부합되는 것으로, 오프라인 망 중심의 유통회사들이 판매 및 서비스 방식을 언택트로 전환하려는 움직임이 활발해지고 있다. 최근 다양한 분야에서 언택트 서비스가 활성화되고 있지만, 뷰티 제품의 경우 고객의 피부타입 및 상태에 따라 제품 선택이 쉽지 않으므로 비대면을 통해 제품을 추천하기가 쉽지 않다. 이와 관련하여 온라인 뷰티 분야에서 제품 추천을 위한 추천시스템 개발 및 추천 관련 연구들이 수행되었지만, 대부분이 설문조사 방법이나 소셜 데이터를 이용하여 추천 알고리즘을 개발한 연구들이었다. 즉, 고객의 피부타입이나 제품 선호도 등의 실제 사용자 정보를 기반으로 세그먼트를 분류한 연구는 부족하였다. 그리하여, 본 연구에서는 뷰티 분야에서의 언택트 서비스 중의 하나인 모바일 애플리케이션의 고객 정보와 검색 로그 데이터를 기반으로 머신러닝 기법의 K-prototypes 알고리즘을 이용하여 고객 세그먼트를 새롭게 분류하고, 이를 기반으로 언택트 마케팅 전략 방안을 제안한다. 본 연구는 머신러닝 기법을 이용하여 새롭게 고객 세그먼트를 분류함으로써 관련 기존 문헌의 범위를 확장하였다. 더불어, 언택트 서비스라는 새로운 소비 트렌드를 반영하여 고객 세그먼트를 분류하고, 이를 기반으로 뷰티 분야의 언택트 서비스에 활용할 수 있는 구체적인 방안을 제시했다는 실무적 의의가 있다.

성공적 eCRM을 위한 전사적 고객 접점 관리 (Enterprise Interaction Management)

  • 임성민
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
    • /
    • pp.183-192
    • /
    • 2001
  • eCRM은 인터넷 상의 고객의 행동을 파악, 가치있는 고객 세그먼트를 찾아내고, 이들에게 타겟 마케팅을 실시함으로써 기업의 수익성을 높이거나, 마케팅활동을 자동화함으로써 고객관리 프로세스의 효율성을 높이는 일련의 과정 (중략)

  • PDF

데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로 (UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification)

  • 이슬이;박도형
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.151-176
    • /
    • 2021
  • 정보기술 산업이 발전됨에 따라 다양한 종류의 데이터가 생겨나고 있고 이를 가공하여 산업에 활용하는 것이 필수인 시대가 되었다. 온 오프라인 상에서 수집된 다양한 디지털 데이터를 분석하여 활용하는것은 산업 내의 고객에게 적합한 경험을 제공하기 위해서 꼭 필요한 과정이다. 새로운 비즈니스, 제품, 서비스를 창출하기 위해서는다방면에서 수집된 고객 데이터를 활용하여잠재고객의 니즈를 깊게 파악하고 행동패턴을 분석하여 숨겨진 욕망의 신호를 잡아내는것이 필수이다. 그러나 효과적인 서비스 개발을 위해서 병행해서 진행되어야 할 데이터 분석, UX 방법론을 활용한 연구는 각각 따로 진행되고 있고 산업 내의 활용 예시가 부족한 것이 사실이다. 본 연구에서는 데이터 분석 방법과 UX 방법론을 응용하여 하나의 프로세스를 제작하였다. 행복을 주제로 진행된 설문조사에서 추출된 고객 데이터를 활용하여 고객의 특성을 파악하기 위한 데이터 분석을 진행하였다. 요인, 회귀분석을 실시하여 행복 데이터 설문의 요인 간의 연관 관계를 확인하였다. 그 다음 연관 관계를 군집을 분류하고 가장 최적의 군집 수를 추출하여분류하였다. 이러한 결과를 바탕으로 교차분석을 진행하여 군집 별로 인구통계학적 특성을 확인하였다. 세그먼트를 분류하기 전 서비스 정의를 하기 위하여 뉴스 기사 및 SNS 문장들을 바탕으로 텍스트 마이닝을 통해 주요 키워드를 바탕으로 아이디어를 도출하였고 이중에 가장 타당한 서비스를 선택하였다. 이러한 결과를 바탕으로 세그먼트및 목표 고객을 선정한 후 세그먼트의 특성대로 대상자를 선정하여 인터뷰를진행하였다. 그 후 특성 및 프로파일정보를 활용하여 페르소나를 제작하여고객의 행동과 최종 목표를 서술하였다. 일반적인페르소나와 데이터를 활용한 페르소나를 비교하여 각각의 특성을 비교 분석하였다. 본 연구를 통해 도출된 프로세스는 다변화되는 서비스의 변화 상황에서 적절한 타겟 고객의 정의 및 정확한 분류 체계로 나뉘어진 고객군을파악 할 수 있는 방법을 제시 한 것에 의의가 있다.

인터뷰 - "대문자 마킹기로 최적의 SKU 관리를 실현하다"

  • 조나리
    • 월간포장계
    • /
    • 통권291호
    • /
    • pp.88-91
    • /
    • 2017
  • 최근 많은 제조사들이 선진국 등 고성장시장에서 수익 성장 기회를 찾는 데 어려움을 겪고 있다. 북미와 서유럽의 제조사들은 고객 분류 방식의 개선을 통해 새로운 돌파구를 찾고 있다. 그들은 세부적으로 구분된 고객 세그먼트의 요구사항을 정확히 충족하기 위해 새로운 맛, 크기, 포장 형태를 개발하고 있다. 소비자들은 쏟아져 나오는 신제품에 긍정적인 반응을 보일 뿐만 아니라 더 많은 제품을 요구하고 있어 SKU(Stock Keeping Unit)의 확산은 더욱 빨라지고 있다. 더욱이 온라인 판매가 확산됨에 따라 SKU 관리는 더욱 중요해지고 있다. SKU 관리에서 중요한 역할을 하는 대문자 마킹에 관해 Videojet Technologies의 글로벌 대문자 마킹 프린터(LPA) 비즈니스 책임자인 Bob Neagle과 이야기를 나눠봤다.

  • PDF

이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론 (A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation)

  • 김형수;홍승우
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.111-126
    • /
    • 2020
  • CRM의 하위 연구 분야로 진행되었던 고객이탈예측은 최근 비즈니스 머신러닝 기술의 발전으로 인해 빅데이터 기반의 퍼포먼스 마케팅 주제로 더욱 그 중요도가 높아지고 있다. 그러나, 기존의 관련 연구는 예측 모형 자체의 성능을 개선시키는 것이 주요 목적이었으며, 전체적인 고객이탈예측 프로세스를 개선하고자 하는 연구는 상대적으로 부족했다. 본 연구는 성공적인 고객이탈관리가 모형 자체의 성능보다는 전체 프로세스의 개선을 통해 더 잘 이루어질 수 있다는 가정하에, 이차원 고객충성도 세그먼트 기반의 고객이탈예측 프로세스 (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation)를 제안한다. CCP/2DL은 양방향, 즉 양적 및 질적 로열티 기반의 고객세분화를 시행하고, 고객세그먼트들을 이탈패턴에 따라 2차 그룹핑을 실시한 뒤, 이탈패턴 그룹별 이질적인 이탈예측 모형을 독립적으로 적용하는 일련의 이탈예측 프로세스이다. 제안한 이탈예측 프로세스의 상대적 우수성을 평가하기 위해 기존의 범용이탈예측 프로세스와 클러스터링 기반 이탈예측 프로세스와의 성능 비교를 수행하였다. 글로벌 NGO 단체인 A사의 협력으로 후원자 데이터를 활용한 분석과 검증을 수행했으며, 제안한 CCP/2DL의 성능이 다른 이탈예측 방법론보다 우수한 성능을 보이는 것으로 나타났다. 이러한 이탈예측 프로세스는 이탈예측에도 효과적일 뿐만 아니라, 다양한 고객통찰력을 확보하고, 관련된 다른 퍼포먼스 마케팅 활동을 수행할 수 있는 전략적 기반이 될 수 있다는 점에서 연구의 의의를 찾을 수 있다.

USN 응용서비스 동향 (A Trend Analysis of the USN Application Service)

  • 김선진;정우석;박가람;최연경;김선중
    • 전자통신동향분석
    • /
    • 제22권3호통권105호
    • /
    • pp.58-66
    • /
    • 2007
  • USN 기술은 산업계, 과학계, 정부기관의 고객을 포함하여 광범위한 시장 세그먼트를 아우르는 사업 기회를 창출할 수 있게 한다. 다양한 USN 응용서비스에 대한 기술적인 실행 가능성은 연구되고 있지만, 아직까지 USN 응용서비스 시장 및 산업에서 기술 채택과 상업화는 지연되고 있는 실정이다. 본 고에서는 국내 시장에 적합한 USN 응용서비스 시장 기회를 분석하고, USN 응용서비스의 잠재적 대상 시장인 u-City와 정부에서 추진중에 있는 USN 시범사업 현황을 살펴본다. 마지막으로 다양한 USN 응용서비스의 시장 진입에 있어 모든 시스템 공급자가 직면하게 되는 공통적인 해결과제를 살펴보고자 한다.

협동적 필터링과 SOM 신경망을 결합한 추천시스템 모델 (A Recommender System Model Combining Collaborative filtering and SOM Neural Networks)

  • 이미희;우용태
    • 한국멀티미디어학회논문지
    • /
    • 제11권9호
    • /
    • pp.1213-1226
    • /
    • 2008
  • 추천시스템은 사용자가 제공한 선호, 관심, 구매경험과 같은 정보를 근거로 하여 다른 사용자에게 가장 알맞은 정보를 제공하는 일련의 가치교환 과정인 개인화를 가능하게 하는 시스템으로 고객의 선호도를 정확히 분석하고, 정제하여 정확한 예측력으로 고객이 원하는 가장 적절한 상품을 추천 해줄 수 있어야 한다. 대부분의 추천시스템들이 협동적 필터링 기법을 적용하고 있어 본 논문에서는 협동적 필터링 기법의 연산수행 량을 개선한 새로운 결합 모델인 SOM(Self-Organizing Map) 신경망 회로와 결합한 추천시스템을 제안하였다. 먼저, 사용자 그룹을 인구통계학적인 특징으로 세그먼트하고 SOM 신경망회로를 이용하여 item 특징에 대한 선호도를 입력 값으로 학습하여 클러스터를 생성하였다. 임의의 사용자에 대한 추천은 선호도가 유사한 클러스터를 결정하여 협동적 필터링 기법을 적용하였으며, 기존의 협동적 필터링 기법의 연산 수행량과 비교 분석하였다. 또한 영화를 대상으로 한 실험을 통하여 추천효율이 향상되었음을 나타내었다.

  • PDF

오차를 허용하는 주기적 연관규칙 탐사를 통한 오차의 경향성에 관한 연구 (Discovery Of Cyclic Association Rule With Loose Cycle and Error Cycle over Loose Cycle)

  • 배수균;남도원;이동하;이전영
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 추계정기학술대회:지능형기술과 CRM
    • /
    • pp.317-324
    • /
    • 2000
  • 주기적인 연관규칙은 타겟데이터베이스를 일정 단위시간으로 나누었을 때 연관규칙이 만족하는 구간이 일정한 주기마다 발생하는 패턴을 탐색하는 방법이다. 하지만, 이 방법은 엄격한 주기를 가지도록 하여 실제 데이터에 그대로 적용하기가 어려웠다. 예를 들이 편의점 데이터에서 매일 오전 7시-8시 사이에 주기적으로 발생하는 연관규칙을 발견할 때, 이러한 연관규칙을 주기적인 연관규칙이라고 한다. 하지만, 실제 데이터에서는 날씨와 같이 사람의 행동에 영향을 미치는 다른 요인 때문에 항상 일정한 주기를 가지는 연관규칙을 찾기는 어렵다. 본 논문에서는 주기가 일정하지 않은 연관규칙을 찾기 위해서 연관규칙의 주기성을 허용 오차를 포함하며 재정의하고, 오차를 허용하기 위한 탐색 알고리즘을 보완하였다. 반면에, 오차를 허용함으로써 오차를 허용하지 않는 경우보다 더 많은 주기성을 찾을 수 있을 뿐만 아니라, 동일한 주기를 가지지만 오프셋이 다른 여러 개의 비슷한 주기가지 찾게 되어 사용자가 의미 있는 연관규칙을 찾는데 방해가 된다. 본 논문에서는 이를 해결하기 위해서 오차를 허용하는 주기적 연관규칙의 오차의 정도를 측정하기 위한 단위로 집중도(intensity)와 경향성(tendency)을 제안한다. 주기적 연관규칙이 매 주기마다 정확한 세그먼트에 나타나는 정도를 나타내는 집중도와, 최소 평균오차를 의미하는 경향성을 이용하여 유사한 주기들 중에서 대표주기만을 찾을 수 있도록 한다. 또한, 오차를 허용하는 주기적 연관규칙에서 오차가 주로 발생하는 패턴을 분석함으로써 고객들의 수요 경향성을 더 잘 파악할 수 있다. 예를 들어, 평소에는 매일 오진 7시∼8시에 나타나던 연관성이 지각하는 사람들이 같은 월요일에는 1시간 늦은 8시∼9시에 나타난다는 오타 정보까지 파악할 수 있다. 이러한 월요일마다 1시간 늦게 나타나는 오차의 경향성을 나타내는 오차 주기(error cyc1e)를 이용함으로써 고객들의 수요의 경향성을 좀 더 세밀한 부분까지 파악할 수 있게 해 준다.

  • PDF

관광분야와 연계된 문화·공연·예술 사회적기업 비즈니스모델 구축: 광주광역시를 중심으로 (Establishing a Business Model for Social Enterprises in the Fields of Culture, Performance, and the Arts Associated with the Tourism Industry: Gwangju Metropolitan City)

  • 김창범;변장섭;나주몽
    • 한국콘텐츠학회논문지
    • /
    • 제16권9호
    • /
    • pp.236-246
    • /
    • 2016
  • 사회적기업은 사회적목적을 달성하기 위해서 영업활동을 수단으로 하는 기업 또는 조직을 말한다. 우리 나라의 사회적기업은 그동안 큰 양적 성장을 보여 왔다. 하지만, 지금은 사회적기업들이 특화된 비즈니스모델의 발굴을 통한 질적 성장을 추구할 때이다. 본 연구는 AHP를 이용하여 광주광역시의 지역수요에 기반한 관광과 연계된 문화 공연 예술 사회적기업의 특화 비즈니스 모델을 개발하였다. 분석결과, 다음과 같은 비즈니스 구성요소들이 필요한 것으로 파악되었다. 가치창출을 위해 일자리 창출 및 공공서비스 혁신을 핵심목적으로 하고, 관광과 연계된 문화 예술 공연 콘텐츠 관련 체험 프로그램이 핵심역량이 될 수 있다. 또한 일반기업, 지자체, 관광과 문화 공연 예술 관련 업체와 협력이 이루어져야 하며, 온 오프라인 결합을 통한 프로그램이 제공되어야 한다. 또한 가치제안에서는 일반소비자, 관련 업체, 연구기관, 내 외국인 관광객, 교육기관으로 고객세그먼트가 이루어져야 하고, 펀딩과 출자금을 통한 자금조달, 파트너쉽을 통한 경영혁신이 필요하다. 그리고 서비스 유료화와 수익배분을 통한 수익모델 구축과 지속적인 가치창출을 위한 협력적 네트워크가 필요하다.