• Title/Summary/Keyword: 고객 세그먼트

Search Result 9, Processing Time 0.019 seconds

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

Enterprise Interaction Management (성공적 eCRM을 위한 전사적 고객 접점 관리)

  • 임성민
    • Proceedings of the Korea Database Society Conference
    • /
    • 2001.06a
    • /
    • pp.183-192
    • /
    • 2001
  • eCRM은 인터넷 상의 고객의 행동을 파악, 가치있는 고객 세그먼트를 찾아내고, 이들에게 타겟 마케팅을 실시함으로써 기업의 수익성을 높이거나, 마케팅활동을 자동화함으로써 고객관리 프로세스의 효율성을 높이는 일련의 과정 (중략)

  • PDF

UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification (데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로)

  • Lee, Seul-Yi;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.151-176
    • /
    • 2021
  • As the information technology industry develops, various kinds of data are being created, and it is now essential to process them and use them in the industry. Analyzing and utilizing various digital data collected online and offline is a necessary process to provide an appropriate experience for customers in the industry. In order to create new businesses, products, and services, it is essential to use customer data collected in various ways to deeply understand potential customers' needs and analyze behavior patterns to capture hidden signals of desire. However, it is true that research using data analysis and UX methodology, which should be conducted in parallel for effective service development, is being conducted separately and that there is a lack of examples of use in the industry. In thiswork, we construct a single process by applying data analysis methods and UX methodologies. This study is important in that it is highly likely to be used because it applies methodologies that are actively used in practice. We conducted a survey on the topic to identify and cluster the associations between factors to establish customer classification and target customers. The research methods are as follows. First, we first conduct a factor, regression analysis to determine the association between factors in the happiness data survey. Groups are grouped according to the survey results and identify the relationship between 34 questions of psychological stability, family life, relational satisfaction, health, economic satisfaction, work satisfaction, daily life satisfaction, and residential environment satisfaction. Second, we classify clusters based on factors affecting happiness and extract the optimal number of clusters. Based on the results, we cross-analyzed the characteristics of each cluster. Third, forservice definition, analysis was conducted by correlating with keywords related to happiness. We leverage keyword analysis of the thumb trend to derive ideas based on the interest and associations of the keyword. We also collected approximately 11,000 news articles based on the top three keywords that are highly related to happiness, then derived issues between keywords through text mining analysis in SAS, and utilized them in defining services after ideas were conceived. Fourth, based on the characteristics identified through data analysis, we selected segmentation and targetingappropriate for service discovery. To this end, the characteristics of the factors were grouped and selected into four groups, and the profile was drawn up and the main target customers were selected. Fifth, based on the characteristics of the main target customers, interviewers were selected and the In-depthinterviews were conducted to discover the causes of happiness, causes of unhappiness, and needs for services. Sixth, we derive customer behavior patterns based on segment results and detailed interviews, and specify the objectives associated with the characteristics. Seventh, a typical persona using qualitative surveys and a persona using data were produced to analyze each characteristic and pros and cons by comparing the two personas. Existing market segmentation classifies customers based on purchasing factors, and UX methodology measures users' behavior variables to establish criteria and redefine users' classification. Utilizing these segment classification methods, applying the process of producinguser classification and persona in UX methodology will be able to utilize them as more accurate customer classification schemes. The significance of this study is summarized in two ways: First, the idea of using data to create a variety of services was linked to the UX methodology used to plan IT services by applying it in the hot topic era. Second, we further enhance user classification by applying segment analysis methods that are not currently used well in UX methodologies. To provide a consistent experience in creating a single service, from large to small, it is necessary to define customers with common goals. To this end, it is necessary to derive persona and persuade various stakeholders. Under these circumstances, designing a consistent experience from beginning to end, through fast and concrete user descriptions, would be a very effective way to produce a successful service.

인터뷰 - "대문자 마킹기로 최적의 SKU 관리를 실현하다"

  • Jo, Na-Ri
    • The monthly packaging world
    • /
    • s.291
    • /
    • pp.88-91
    • /
    • 2017
  • 최근 많은 제조사들이 선진국 등 고성장시장에서 수익 성장 기회를 찾는 데 어려움을 겪고 있다. 북미와 서유럽의 제조사들은 고객 분류 방식의 개선을 통해 새로운 돌파구를 찾고 있다. 그들은 세부적으로 구분된 고객 세그먼트의 요구사항을 정확히 충족하기 위해 새로운 맛, 크기, 포장 형태를 개발하고 있다. 소비자들은 쏟아져 나오는 신제품에 긍정적인 반응을 보일 뿐만 아니라 더 많은 제품을 요구하고 있어 SKU(Stock Keeping Unit)의 확산은 더욱 빨라지고 있다. 더욱이 온라인 판매가 확산됨에 따라 SKU 관리는 더욱 중요해지고 있다. SKU 관리에서 중요한 역할을 하는 대문자 마킹에 관해 Videojet Technologies의 글로벌 대문자 마킹 프린터(LPA) 비즈니스 책임자인 Bob Neagle과 이야기를 나눠봤다.

  • PDF

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

A Trend Analysis of the USN Application Service (USN 응용서비스 동향)

  • Kim, S.J.;Jung, W.S.;Park, G.R.;Choi, Y.K.;Kim, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.22 no.3 s.105
    • /
    • pp.58-66
    • /
    • 2007
  • USN 기술은 산업계, 과학계, 정부기관의 고객을 포함하여 광범위한 시장 세그먼트를 아우르는 사업 기회를 창출할 수 있게 한다. 다양한 USN 응용서비스에 대한 기술적인 실행 가능성은 연구되고 있지만, 아직까지 USN 응용서비스 시장 및 산업에서 기술 채택과 상업화는 지연되고 있는 실정이다. 본 고에서는 국내 시장에 적합한 USN 응용서비스 시장 기회를 분석하고, USN 응용서비스의 잠재적 대상 시장인 u-City와 정부에서 추진중에 있는 USN 시범사업 현황을 살펴본다. 마지막으로 다양한 USN 응용서비스의 시장 진입에 있어 모든 시스템 공급자가 직면하게 되는 공통적인 해결과제를 살펴보고자 한다.

A Recommender System Model Combining Collaborative filtering and SOM Neural Networks (협동적 필터링과 SOM 신경망을 결합한 추천시스템 모델)

  • Lee, Mi-Hee;Woo, Young-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1213-1226
    • /
    • 2008
  • A recommender system supports people in making recommendations finding a set of people who are likely to provide good recommendations for a given person, or deriving recommendations from implicit behavior such as browsing activity, buying patterns, and time on task. We proposed new recommender system which combined SOM(Self-Organizing Map) neural networks with the Collaborative filtering which most recommender systems hat applied First, we segmented user groups according to demographic characteristics and then we trained the SOM with people's preferences as ito inputs. Finally we applied the classic collaborative filtering to the clustering with similarity in which an recommendation seeker belonged to, and therefore we didn't have to apply the collaborative filtering to the whose data set. Experiments were run for EachMovies data set. The results indicated that the predictive accuracy was increased in terms of MAE(Mean-Absolute-Error).

  • PDF

Discovery Of Cyclic Association Rule With Loose Cycle and Error Cycle over Loose Cycle (오차를 허용하는 주기적 연관규칙 탐사를 통한 오차의 경향성에 관한 연구)

  • 배수균;남도원;이동하;이전영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.317-324
    • /
    • 2000
  • 주기적인 연관규칙은 타겟데이터베이스를 일정 단위시간으로 나누었을 때 연관규칙이 만족하는 구간이 일정한 주기마다 발생하는 패턴을 탐색하는 방법이다. 하지만, 이 방법은 엄격한 주기를 가지도록 하여 실제 데이터에 그대로 적용하기가 어려웠다. 예를 들이 편의점 데이터에서 매일 오전 7시-8시 사이에 주기적으로 발생하는 연관규칙을 발견할 때, 이러한 연관규칙을 주기적인 연관규칙이라고 한다. 하지만, 실제 데이터에서는 날씨와 같이 사람의 행동에 영향을 미치는 다른 요인 때문에 항상 일정한 주기를 가지는 연관규칙을 찾기는 어렵다. 본 논문에서는 주기가 일정하지 않은 연관규칙을 찾기 위해서 연관규칙의 주기성을 허용 오차를 포함하며 재정의하고, 오차를 허용하기 위한 탐색 알고리즘을 보완하였다. 반면에, 오차를 허용함으로써 오차를 허용하지 않는 경우보다 더 많은 주기성을 찾을 수 있을 뿐만 아니라, 동일한 주기를 가지지만 오프셋이 다른 여러 개의 비슷한 주기가지 찾게 되어 사용자가 의미 있는 연관규칙을 찾는데 방해가 된다. 본 논문에서는 이를 해결하기 위해서 오차를 허용하는 주기적 연관규칙의 오차의 정도를 측정하기 위한 단위로 집중도(intensity)와 경향성(tendency)을 제안한다. 주기적 연관규칙이 매 주기마다 정확한 세그먼트에 나타나는 정도를 나타내는 집중도와, 최소 평균오차를 의미하는 경향성을 이용하여 유사한 주기들 중에서 대표주기만을 찾을 수 있도록 한다. 또한, 오차를 허용하는 주기적 연관규칙에서 오차가 주로 발생하는 패턴을 분석함으로써 고객들의 수요 경향성을 더 잘 파악할 수 있다. 예를 들어, 평소에는 매일 오진 7시∼8시에 나타나던 연관성이 지각하는 사람들이 같은 월요일에는 1시간 늦은 8시∼9시에 나타난다는 오타 정보까지 파악할 수 있다. 이러한 월요일마다 1시간 늦게 나타나는 오차의 경향성을 나타내는 오차 주기(error cyc1e)를 이용함으로써 고객들의 수요의 경향성을 좀 더 세밀한 부분까지 파악할 수 있게 해 준다.

  • PDF

Establishing a Business Model for Social Enterprises in the Fields of Culture, Performance, and the Arts Associated with the Tourism Industry: Gwangju Metropolitan City (관광분야와 연계된 문화·공연·예술 사회적기업 비즈니스모델 구축: 광주광역시를 중심으로)

  • Kim, Chang-Beom;Byeon, Jang-Seop;Na, Ju-Mong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.9
    • /
    • pp.236-246
    • /
    • 2016
  • Social enterprise is an organization which use business activities as a means to achieve of social purposes. It has grown sharply since 2007 in Korea. However, now it is time had to pursue qualitative growth through the development of specialized business model. This study aims to identify business components using the Analytic Hierarchy Process (AHP) with experts and to develop a tailored business model for social enterprises in the fields of culture, performance, and the arts associated with the tourism based on regional demand within Gwangju. The analysis shows that job creation should be set as the main objectives to create value, and programs that offer hands-on experience with that fields can be the core competency. Cooperation among private corporations, local governments and agencies related to that fields is essential, as are programs provided through on- and off-line platforms. To develop a value proposition, customers must be segmented among a variety of the market participants.