• Title/Summary/Keyword: 고객 빅데이터

Search Result 192, Processing Time 0.021 seconds

Credit Card Fraud Detection Based on SHAP Considering Time Sequences (시간대를 고려한 SHAP 기반의 신용카드 이상 거래 탐지)

  • Soyeon yang;Yujin Lim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.370-372
    • /
    • 2023
  • 신용카드 부정 사용은 고객 및 기업의 신용과 재산에 막대한 손실을 미치고 있다. 이에 따라 금융사들은 이상금융거래탐지시스템을 도입하였으나 이상 거래 발생 여부를 지속적으로 모니터링하고 있기 때문에 시스템 유지에 많은 비용이 따른다. 따라서 본 논문에서는 컴퓨팅 리소스를 절약함과 동시에 성능 개선 효과를 보인 신용카드 이상 거래 탐지 알고리즘을 제안한다. CTGAN 을 활용하여 정상 거래와 이상 거래의 비율을 일부 완화하였고 XAI 기법인 SHAP 를 활용하여 유의미한 속성값을 선택하였다. 이것을 기반으로 LSTM Autoencoder를 사용하여 이상데이터를 탐지하였다. 그 결과 전통적인 비지도 학습 기법에 비해 제안 알고리즘이 우수한 성능을 보였음을 확인하였다.

A Genetic Algorithm for Production Scheduling of Biopharmaceutical Contract Manufacturing Products (바이오의약품 위탁생산 일정계획 수립을 위한 유전자 알고리즘)

  • Ji-Hoon Kim;Jeong-Hyun Kim;Jae-Gon Kim
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.141-152
    • /
    • 2024
  • In the biopharmaceutical contract manufacturing organization (CMO) business, establishing a production schedule that satisfies the due date for various customer orders is crucial for competitiveness. In a CMO process, each order consists of multiple batches that can be allocated to multiple production lines in small batch units for parallel production. This study proposes a meta-heuristic algorithm to establish a scheduling plan that minimizes the total delivery delay of orders in a CMO process with identical parallel machine. Inspired by biological evolution, the proposed algorithm generates random data structures similar to chromosomes to solve specific problems and effectively explores various solutions through operations such as crossover and mutation. Based on real-world data provided by a domestic CMO company, computer experiments were conducted to verify that the proposed algorithm produces superior scheduling plans compared to expert algorithms used by the company and commercial optimization packages, within a reasonable computation time.

Building an SNS Crawling System Using Python (Python을 이용한 SNS 크롤링 시스템 구축)

  • Lee, Jong-Hwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.61-76
    • /
    • 2018
  • Everything is coming into the world of network where modern people are living. The Internet of Things that attach sensors to objects allows real-time data transfer to and from the network. Mobile devices, essential for modern humans, play an important role in keeping all traces of everyday life in real time. Through the social network services, information acquisition activities and communication activities are left in a huge network in real time. From the business point of view, customer needs analysis begins with SNS data. In this research, we want to build an automatic collection system of SNS contents of web environment in real time using Python. We want to help customers' needs analysis through the typical data collection system of Instagram, Twitter, and YouTube, which has a large number of users worldwide. It is stored in database through the exploitation process and NLP process by using the virtual web browser in the Python web server environment. According to the results of this study, we want to conduct service through the site, the desired data is automatically collected by the search function and the netizen's response can be confirmed in real time. Through time series data analysis. Also, since the search was performed within 5 seconds of the execution result, the advantage of the proposed algorithm is confirmed.

A Study on Design Medical Tourism Strategy and Business Service Model (의료관광 전략 수립 및 비즈니스 서비스 모델 설계에 관한 연구)

  • Chang, Sae Kyung;Baek, Jong Sun
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.3
    • /
    • pp.43-55
    • /
    • 2017
  • The market for medical tourism services in the world is steadily increasing and the medical tourism market in the South Korea is also showing high growth. However, they have also problem such as informal various information and services, irregularity price competition etc. In order to solve this problem, We have designed a medical tourism service model based on ICT specific on domestic medical ecosystem. First, analysis trends of domestic and overseas medical ecosystem and identify current problem of medical tourism. In order to solve existed problem we also have designed a medical tourism strategy. Based on the strategy, we have designed business service model based on ICT platform for as fit as Korea medical tourism status. The proposed medical tourism business service model can provide usability to customer and also can solve current medical tourism problem. We expect industrial effect and contribution to the activation.

The Effect of Online Multiple Channel Marketing by Device Type (디바이스 유형을 고려한 온라인 멀티 채널 마케팅 효과)

  • Hajung Shin;Kihwan Nam
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.59-78
    • /
    • 2018
  • With the advent of the various device types and marketing communication, customer's search and purchase behavior have become more complex and segmented. However, extant research on multichannel marketing effects of the purchase funnel has not reflected the specific features of device User Interface (UI) and User Experience (UX). In this study, we analyzed the marketing channel effects of multi-device shoppers using a unique click stream dataset from global online retailers. We examined device types that activate online shopping and compared the differences between marketing channels that promote visits. In addition, we estimated the direct and indirect effects on visits and purchase revenue through customer's accumulated experience and channel conversions. The findings indicate that the same customer selects a different marketing channel according to the device selection. These results can help retailers gain a better understanding of customers' decision-making process in multi-marketing channel environment and devise the optimal strategy taking into account various device types. Our empirical analyses yield business implications based on the significant results from global big data analytics and contribute academically meaningful theoretical framework using an economic model. We also provide strategic insights attributed to the practical value of an online marketing manager.

A Study of Social Media User Response about Firms' Crisis Response Strategies (기업의 위기대응전략에 대한 소셜 미디어 이용자의 반응 연구)

  • Kim, Bora;Kim, Woohee;Jung, Yoonhyuk
    • The Journal of Bigdata
    • /
    • v.2 no.1
    • /
    • pp.27-39
    • /
    • 2017
  • The importance of online communication is getting increased by the rapid growth of smartphone supply and Social Network Service (SNS) use. Catching up with the trend, firms are actively use SNS to improve brand image, promote products, and communicate with customer. On the one hand, SNS is the channel for firms' marketing activities, but on the other, it is also the channel where the events related to the firms propagate in real time. Firms are led to unexpected state of crisis, when events are quickly spread out on SNS. Then firms are assessed their image by the way they deal with the state of crisis. This paper proposes to figure out user response on SNS according to each crisis response strategies by analyzing event-related twitter data when crisis situations of firms arise. We classify crisis response strategies into response attitude, defensive and accommodative response, and response speed, fast and slow response. This paper suggests optimal crisis response strategy to firms regarding state of crisis propagated on SNS.

  • PDF

A Study on Detection of Small Export Companies Utilizing Trade Exports Live Index (무역수출 라이브지수를 활용한 중소수출기업 발굴 연구)

  • Kim, Heecheon;Leem, Choon Seong;Sung, Juwon
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 2019
  • There have been many discussions on export indices in trade exports, but there is no definite trade export index which can be explained by objective indicators. Korea International Trade Association (KITA), Korea Trade-Investment Promotion Agency (KOTRA), etc., but we are currently in the process of thinking about ways to express the capabilities of exporting companies. In this study, we constructed the AI data sets by setting the activity indicators such as the size of the company and the credit score, the number of transaction customers, the number of transactions, the number of items, the transaction volume, and the transaction period as features, Lightgbm. Using the Graph Neural Network as an industrial cluster classification model, the export live index which expresses the exportable capacity among companies, items, and business groups was calculated. This includes the past activity of the company from the current calculating index Objectivity.

  • PDF

A Study on Subscriber's Preference Factors through Korea, United States and Japan Webtoon Data Analysis : With Naver Webtoon (한, 미, 일 웹툰 분석을 통한 구독자 선호 요인 탐색 : 네이버 웹툰을 중심으로)

  • Do, Sang-Beum;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Currently, Webtoon Industry is promising as high potential market from it's high growth trend. The best advantage webtoon propose is that webtoon can provide appropriate service to customers with various needs. For this feature, webtoon industry is expanding throughout the world. This situation may give a great chance for authors and webtoon service corporation to export webtoon contents. Also, this situation could be an opportunity for webtoon to become a new "Korean Wave" contents. For successful advance to market, a close analysis for customers of exporting countries. In this research, we collected the data from Naver Webtoon and analyzed the features of webtoons and webtoon subscribers according to countries. With this research, it would be possible to find out specific methods and variables which affect the preference of webtoon subscribers.

Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP (리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석)

  • Boram Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • The tourism industry is facing a crisis due to the recent COVID-19 pandemic, and it is vital to improving profitability to overcome it. In situations such as COVID-19, it would be more efficient to sell additional products other than guest rooms to customers who have visited to increase the unit price rather than adopting an aggressive sales strategy to increase room occupancy to increase profits. Previous tourism studies have used machine learning techniques for demand forecasting, but there have been few studies on cross-selling forecasting. Also, in a broader sense, a resort is the same accommodation industry as a hotel. However, there is no study specialized in the resort industry, which is operated based on a membership system and has facilities suitable for lodging and cooking. Therefore, in this study, we propose a cross-selling prediction model using various machine learning techniques with an actual resort company's accommodation data. In addition, by applying the explainable artificial intelligence XAI(eXplainable AI) technique, we intend to interpret what factors affect cross-selling and confirm how they affect cross-selling through empirical analysis.

Customer Classification and Market Basket Analysis Using K-Means Clustering and Association Rules: Evidence from Distribution Big Data of Korean Retailing Company (군집분석과 연관규칙을 활용한 고객 분류 및 장바구니 분석: 소매 유통 빅데이터를 중심으로)

  • Liu, Run-Qing;Lee, Young-Chan;Mu, Hong-Lei
    • Knowledge Management Research
    • /
    • v.19 no.4
    • /
    • pp.59-76
    • /
    • 2018
  • With the arrival of the big data era, customer data and data mining analysis have gradually dominated the process of Customer Relationship Management (CRM). This phenomenon indicates that customer data along with the use of information techniques (IT) have become the basis for building a successful CRM strategy. However, some companies can not discover valuable information through a large amount of customer data, which leads to the failure of making appropriate business strategy. Without suitable strategies, the companies may lose the competitive advantage or probably go bankrupt. The purpose of this study is to propose CRM strategies by segmenting customers into VIPs and Non-VIPs and identifying purchase patterns using the the VIPs' transaction data and data mining techniques (K-means clustering and association rules) of online shopping mall in Korea. The results of this paper indicate that 227 customers were segmented into VIPs among 1866 customers. And according to 51,080 transactions data of VIPs, home product and women wear are frequently associated with food, which means that the purchase of home product or women wears mainly affect the purchase of food. Therefore, marketing managers of shopping mall should consider these shopping patterns when they build CRM strategy.