• Title/Summary/Keyword: 고객 분류

Search Result 524, Processing Time 0.029 seconds

A case study on balanced customer segmentation (균형적 고객세분화에 관한 사례연구)

  • Yoon Jong-Wook;Yoon Jong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.303-317
    • /
    • 2006
  • The process of segmenting customers in CRM should take into equal consideration both the companies' and customers' expected value. However, most of the current studies on customer segmentation have focused only on the companies view in terms of profitability. This study focuses on clarifying a problem and proposing a modified view in the customer segmentation step. The authors offer a proposition which is beneficial to both customers and companies, and thus makes the segmentation step more balanced. There is a two-pronged focus on customer segmentation in this study: first, this paper proposes a balanced view considering not only companies' expected value, but also that of the customers'. Secondly, such balanced segmentation will give a more accurate definition of loyal customers for a given company. This new approach can be expected to improve the level of satisfaction and the length of customer retention, and to increase effectiveness in corporate resource allocation for customer target marketing, as well as improve company insight into customer needs and preferences.

  • PDF

UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification (데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로)

  • Lee, Seul-Yi;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.151-176
    • /
    • 2021
  • As the information technology industry develops, various kinds of data are being created, and it is now essential to process them and use them in the industry. Analyzing and utilizing various digital data collected online and offline is a necessary process to provide an appropriate experience for customers in the industry. In order to create new businesses, products, and services, it is essential to use customer data collected in various ways to deeply understand potential customers' needs and analyze behavior patterns to capture hidden signals of desire. However, it is true that research using data analysis and UX methodology, which should be conducted in parallel for effective service development, is being conducted separately and that there is a lack of examples of use in the industry. In thiswork, we construct a single process by applying data analysis methods and UX methodologies. This study is important in that it is highly likely to be used because it applies methodologies that are actively used in practice. We conducted a survey on the topic to identify and cluster the associations between factors to establish customer classification and target customers. The research methods are as follows. First, we first conduct a factor, regression analysis to determine the association between factors in the happiness data survey. Groups are grouped according to the survey results and identify the relationship between 34 questions of psychological stability, family life, relational satisfaction, health, economic satisfaction, work satisfaction, daily life satisfaction, and residential environment satisfaction. Second, we classify clusters based on factors affecting happiness and extract the optimal number of clusters. Based on the results, we cross-analyzed the characteristics of each cluster. Third, forservice definition, analysis was conducted by correlating with keywords related to happiness. We leverage keyword analysis of the thumb trend to derive ideas based on the interest and associations of the keyword. We also collected approximately 11,000 news articles based on the top three keywords that are highly related to happiness, then derived issues between keywords through text mining analysis in SAS, and utilized them in defining services after ideas were conceived. Fourth, based on the characteristics identified through data analysis, we selected segmentation and targetingappropriate for service discovery. To this end, the characteristics of the factors were grouped and selected into four groups, and the profile was drawn up and the main target customers were selected. Fifth, based on the characteristics of the main target customers, interviewers were selected and the In-depthinterviews were conducted to discover the causes of happiness, causes of unhappiness, and needs for services. Sixth, we derive customer behavior patterns based on segment results and detailed interviews, and specify the objectives associated with the characteristics. Seventh, a typical persona using qualitative surveys and a persona using data were produced to analyze each characteristic and pros and cons by comparing the two personas. Existing market segmentation classifies customers based on purchasing factors, and UX methodology measures users' behavior variables to establish criteria and redefine users' classification. Utilizing these segment classification methods, applying the process of producinguser classification and persona in UX methodology will be able to utilize them as more accurate customer classification schemes. The significance of this study is summarized in two ways: First, the idea of using data to create a variety of services was linked to the UX methodology used to plan IT services by applying it in the hot topic era. Second, we further enhance user classification by applying segment analysis methods that are not currently used well in UX methodologies. To provide a consistent experience in creating a single service, from large to small, it is necessary to define customers with common goals. To this end, it is necessary to derive persona and persuade various stakeholders. Under these circumstances, designing a consistent experience from beginning to end, through fast and concrete user descriptions, would be a very effective way to produce a successful service.

A Study on a Smart Digital Signage Using Bayesian Age Estimation Technique for the Next Generation Airport Service (차세대 공항 서비스를 위한 베이지안 연령추정기법을 이용하는 스마트 디지털 사이니지에 대한 연구)

  • Kim, Chun-Ho;Lee, Dong Woo;Baek, Gyeong Min;Moon, Seong Yeop;Heo, Chan;Na, Jong Whoa;Ohn, Seung-Yup;Choi, Woo Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.533-540
    • /
    • 2014
  • We propose an age estimation-based smart digital signage for the next-generation airport service. The proposed system can recognize the face of the customer so that it can display the selective information. Using a webcam, the system captures the face of the customer and estimates the age of the customer by calculating the wrinkle density of the face and applying bayesian classifier. The developed age estimation method is tested with a face database for the performance evaluation. We expect the new digital signage may improve the satisfaction of customers of the airport business.

Product Liability Prevention by ISO9001:2000 Quality Management System (제조물책임(PL) 대응방안으로의 ISO9001:2000 품질경영시스템)

  • 최성운;이락구
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.163-173
    • /
    • 2000
  • 2002년 7월부터 시행될 한국의 제조물책임법은 제조물의 결함으로 인한 소비자의 피해구제가 목적으로 이에 따라 기업으로서는 제품의 품질과 안전에 대한 부담은 더욱 증가하게 되었다. ISO9001:2000 품질경영시스템의 요구사항은 고객만족 지향에 대한 프로세스의 지속적인 개선을 강조하여 개정되었고, 고객의 요구는 제품의 안전을 더욱 중요시하는 추세로서 이러한 대응방안을 ISO9001:2000 품질경영시스템의 요구사항에서 고찰·제시하고자 한다. ISO9001:2000 품질경영시스템은 경영에 대한 프로세스 접근방식의 도입으로 프로세스의 입력사항으로 고객이 중요한 역할을 하며, 고객의 요구사항이 충족되었는지를 검토하며, 지속적인 고객만족을 위해 프로세스를 관리한다. 본 연구에서는 먼저 제조물책임법의 도입배경과 Is09001:2000 품질경영시스템의 특징을 고찰한다. 그리고, ISO9001:2000 품질경영시스템과 PL과의 관련성을 제고하여 제조물의 결함 유형별, 경영관리지침 항목, 소송상의 항목으로 분류하여 제조물책임 대응방안으로 ISO 9001:2000 품질경영시스템을 제시하고자 한다.

  • PDF

ATP Model in SCM Environment for Improving the Value of Customer Service (고객가치 향상을 위한 SCM환경에서의 ATP모델 연구)

  • 김원식;남호기;박상민
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.11a
    • /
    • pp.73-80
    • /
    • 2000
  • 공급망상에서 ATP는 단순히 고객에게 납기를 확약해 주는 고객 서비스 기능이 아니다. 이것은 공급 망상에서 ATP Rule을 기반으로 하여 수요와 공급 일치에 도달하기 위한 핵심 기능이다 따라서 SCM Solution을 이용하여 공급 체인 전반에 걸쳐 제품 가용성에 대한 즉시 및 동시 엑세스를 관리하여 기업의 납기 일의 정확도에 대한 최고의 확신을 가져올 수 있으며, SCM Solution을 통해 주문이나 예측 수주로 인하여 새로운 수요가 제품 가용성에 미칠 영향을 결정할 수 있다. 본 논문에서는 공급체인 전체의 통합관리 솔루션을 통하여 SCM에 대한 필요성을 정리하고 ATP관련 데이터를 분석을 수행한다. 이 것을 바탕으로 고객관계 관리( Customer Relationship Management)와 연계하여 세부데이터의 흐름 및 고객 가치를 향상 할 수 있는 ATP Rule을 정의한 후, 본 논문에서는 공급망상에 ATP Rule을 적용하여 ATP관련 데이터를 유연성 있게 취합할 수 있는 방안과 분류체계를 제시한 다단계 ATP모형을 제시 한다.

  • PDF

Extended Web Log Processing System by using Click-Stream (클릭스트림 분석을 통한 확장된 웹 로그 처리 시스템)

  • Kang, Mi-Jung;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2798-2800
    • /
    • 2001
  • 인터넷 사용자가 급증하고, 인터넷을 통한 비즈니스에 수익 모델에 대한 관심이 높아지면서 방문자별로 맞춤 정보를 제공하는 퍼스널라이제이션이 인터넷 개발자 및 사용자들의 관심을 모으고 있다. 원투원 마케팅은 개별 고객의 성별, 나이, 소득 등 인구 통계 정보와 고객의 취미, 레저 등에 관한 정보 및 구매 패턴을 DB화하여 고객에게 가장 적절한 상품, 정보, 광고를 제공하는 것이다. 원투원 마케팅을 기본으로 개인과의 끊임없는 상호교류를 통해 고객에게 맞춤 서비스를 제공할수 있다. 본 논문에서는 맞춤 서비스 제공을 위한 전처리과정으로 클릭스트림 분석을 통한 확장된 웹 로그 정보를 통해서 고객들의 성향을 분석하였다. 그리고 이 웹 로그서버는 웹사이트로부터 얻은 로그정보를 분류하고 저장하여 관리자가 확장된 웹 로그 정보를 쉽게 분석할 수 있다. 이때 데이터베이스 저장 기술로 OLE DB Provider상에서 수행되는 ADO 기술을 사용함으로써 확장된 웹 로그 처리 시스템을 설계하였다. 확장된 웹 로그 DB를 패턴분석, 군집분석 등의 마이닝(Mining) 기법을 통하여 맞춤 서비스에 대한 사용자 프로파일을 구축 할 수 있다.

  • PDF

Buying Customer Classification in Automotive Corporation with Decision Tree (의사결정트리를 통한 자동차산업의 구매패턴분류)

  • Lee, Byoung-Yup;Park, Yong-Hoon;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.372-380
    • /
    • 2010
  • Generally, data mining is the process of analyzing data from different perspectives and summarizing it into useful information that can be used to increase revenue, cuts costs, or both. It allows users to analyze data from many different dimensions or angles, categorize it, and summarize the relationships identified. Technically, data mining is the process of finding correlations or patterns among dozens of fields in large relational databases. Data mining is one of the fastest growing field in the computer industry. Because of According to computer technology has been improving, Massive customer data has stored in database. Using this massive data, decision maker can extract the useful information to make a valuable plan with data mining. Data mining offers service providers great opportunities to get closer to customer. Data mining doesn't always require the latest technology, but it does require a magic eye that looks beyond the obvious to find and use the hidden knowledge to drive marketing strategies. Automotive market face an explosion of data arising from customer but a rate of increasing customer is getting lower. therefore, we need to determine which customer are profitable clients whom you wish to hold. This paper builds model of customer loyalty detection and analyzes customer buying patterns in automotive market with data mining using decision tree as a quinlan C4.5 and basic statics methods.

Design of Contact Scheduling System(CSS) for Customer Retention (고객유지를 위한 접촉스케줄링시스템의 설계)

  • Lee, Jee-Sik;Cho, You-Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.83-101
    • /
    • 2005
  • Customer retention is one of the major issues in life insurance industry, in which competition is increasingly fierce. There are many things for the life insurers to do many things to retain the customers. One of those things is to make sure to keep in touch with all customers. When an insurance-planner resigned, his/her customers must be taken care of by some planner-assistants. This article outlines the design of Contact Scheduling System (CSS) that supports planner-assistants for contacting the customers. Planner-assistants are unable to share the resigned insurance-planner's experience and knowledge regarding the customer relationship management. The CSS developed by employing both Classification And Regression Tree (CART) technique and Sequential Pattern Mining (SPM) technique has a two-stage process. In the first stage, it segments the customers into eight groups by CART model. Then it generates contact scheduling information consisting of contact-purpose, contact-interval and contact-channel, according to the segment's typical contact pattern. Contact-purpose is derived by schedule-driven, event-driven, or business-rule-driven. Schedule-driven contact is determined by SPM model. In the operation of CSS in a realistic situation, it shows a practicality in supporting planner-assistants to keep in touch with the customers efficiently and effectively.

  • PDF

A Model for Effective Customer Classification Using LTV and Churn Probability : Application of Holistic Profit Method (고객의 이탈 가능성과 LTV를 이용한 고객등급화 모형개발에 관한 연구)

  • Lee, HoonYoung;Yang, JooHwan;Ryu, Chi Hun
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.4
    • /
    • pp.109-126
    • /
    • 2006
  • An effective customer classification has been essential for the successful customer relationship management. The typical customer rating is carried out by the proportionally allocating the customers into classes in terms of their life time values. However, since this method does not accurately reflect the homogeneity within a class along with the heterogeneity between classes, there would be many problems incurred due to the misclassification. This paper suggests a new method of rating customer using Holistic profit technique, and validates the new method using the customer data provided by an insurance company. Holistic profit is one of the methods used for deciding the cutoff score in screening the loan application. By rating customers using the proposed techniques, insurance companies could effectively perform customer relationship management and diverse marketing activities.

  • PDF