• 제목/요약/키워드: 고객 분류

검색결과 524건 처리시간 0.045초

인터넷 쇼핑몰에서의 동적 고객 분류에 관한 연구

  • 임승재;서의호;정태수
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.586-590
    • /
    • 2003
  • 고객 분류는 고객관계관리(CRM)의 한 부분으로서 기업에게 이익을 주는 고객의 속성과 구매패턴을 분석함으로써 목표 고객을 결정하는 것을 의미한다. 현재까지 고객 분류에 관한 연구는 특정한 시점에서 고객의 속성과 구매 패턴을 분석함으로써 이루어졌다. 그러나 인터넷 쇼핑몰과 같은 동적인 환경에 있어서 기존의 정적인 분석방법은 시간에 따라 지속적으로 변하는 고객의 행동 변화를 찾아내고, 예측하는데 적합하지 않다. 본 논문에서는 Decision Tree, ANOVA 분석, ARIMA 모형을 사용하여, 특정한 시점에서의 고객 분류뿐만 아니라 미래 시점에서의 고객 분류를 예측하고 패턴을 분석하는 동적인 고객 분류 방법을 제안한다. 동적인 고객 분류를 통해 인터넷 쇼핑몰 기업은 효율적인 마케팅 전략을 작성하여 기업의 이익을 증진시킬 수 있다.

  • PDF

신경망과 다단계 연관규칙을 이용한 구매 패턴 분류 시스템의 설계 (Design of Purchasing Pattern Classification System Using Nural Network and Multiple-Level Association Rules)

  • 이종민;정홍
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.203-206
    • /
    • 2000
  • 신경망을 이용해 고객집단을 분류하고 고객의 특성에 따라 세분화된 고객들에 대해 다단계 연관규칙을 적용해서 고객의 상품 구매패턴을 찾아 줌으로써 마케팅 전략 결정을 지원하는 구매패턴분류 시스템을 설계한다. 고객분류를 위한 신경망 시스템은 다층 퍼셉트론에 역전파 알고리즘을 이용한다. 주소, 구매금액, 구매횟수, 고객 구분, 상긴 등과 같은 고객정보를 입력층에 입력변수로 지정하고, 이에 따른 우량/일반고객을 출력변수로 지정한 후 신경망을 학습시키면, 실제의 우량/일반의 간과 예측되는 우량/일반의 값의 차이론 최소화시키면서 모형을 형성시켜 나가게 된다. 구매패턴 분류 시스템은 다단계 연관규칙을 이용한다. 고객분류 서브시스템을 통해 고객집단이 세분화되면 각각의 고객집단에 대해 TID와 품목 트랜잭션을 입력으로 cumulate 알고리즘과 개념계층을 이용해 일반화 과정을 수행하면서 빈발 항목을 찾게 되고 이론 근거로 항목간의 연관규칙을 찾아내게 된다.

  • PDF

고객관계관리를 위한 데이터마이닝 통합모형에 관한 연구 (An Integrated Data Mining Model for Customer Relationship Management)

  • 송임영;오염덕;이태석;신기정;김경창
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (C)
    • /
    • pp.154-159
    • /
    • 2006
  • 본 논문은 웹 서버에 의해 자동으로 수집되는 로그 파일로부터 고객 가치 판단 기준을 고객의 행동 기반에 두고 군집화 기법을 이용하여 고객을 세분화하고 세분화 결과에 의사결정나무를 적용함으로써 고객을 분류하는 통합 모형을 제안하였다. 또한, 분류된 고객들의 주 서비스 활용 패턴을 분석하기 위하여 연관규칙기법을 적용하여 고객의 과학기술정보 활용의 연관성을 분석함으로써, 과학정보포털 서비스를 제공하는 사이트 이용자의 분류군에 해당하는 정보와 인터페이스를 제공하는 새로운 방법에 대하여 연구하였다. 고객 관리 측면에서 본 논문은 정보 서비스를 제공하는 웹 사이트의 기존고객을 분류하여 패턴을 분석함으로써 고객 위주의 사이트 운영정책과 동적 인터페이스를 제공하기 위한 웹사이트 활용 방안을 제시하였다. 또한, 고객의 지속적인 관리라 각 고객 분류군별에 안는 서비스를 제공하고 고객의 관리에도 기여할 수 있을 것이다.

  • PDF

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • 이지영;김종우
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

eCRM에서 최적화 모형을 이용한 고객 분류 시스템 (Customer Classification System using Optimized Form in eCRM)

  • 이재훈;이성주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.149-152
    • /
    • 2004
  • 기업들의 고객중심 마케팅 기법중 하나인 고객관계관리(CRM : Customer Relationship Management)가 인터넷의 발전으로 온라인화 되고 있으며 다양하게 발전되어 왔다. 가장 대두되고 있는 문제는 고객 분류를 객관적인 방법으로 어떻게 자동화할 수 있는가 이다. 본 논문은 최적화 모형을 이용하여 고객 분류를 더욱 세밀하게 할 수 있음을 제안하였고 고객 집단 편성 최적화를 반영함으로써 고객을 최적으로 분류할 수 있는 시스템을 설계 및 구축하였다.

  • PDF

전자메일 자동관리 시스템을 위한 전자메일 분류기의 성능 비교 (Comparison of e-Mail Classifiers for e-Mail Response Management Systems)

  • 김국표;권영식;백찬영
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2002년도 추계학술대회
    • /
    • pp.411-416
    • /
    • 2002
  • 인터넷의 발전과 더불어 전자메일 사용자가 증가하게 되고, 기업의 고객접촉채널로서 전자메일에 대한 중요성 또한 증가되고 있다. 고객의 요구에 대해 적시에 적절하게 응답하지 못하면 고객의 불만족이 증가하게 되고, 충성도를 감소시켜 결국 장기적 매출 및 수익성 악화를 초래하게 된다. 따라서 고객의 전자메일에 신속, 정확하게 응답할 수 있는 전자 메일 자동관리 시스템의 필요성이 증가되고 있다. 본 연구에서는 나이브 베이지안 학습과 중심점 기반 분류 방법을 이용하여 전자메일 자동관리 시스템에서 전자메일 분류를 수행하는 분류기를 구현한다. 구현된 분류기를 이용하여 실제 기업의 고객 전자메일을 분류하는 실험을 수행하고 두 분류기의 성능을 비교하였다. 실험결과 두 분류기 모두 전자메일 분류에 비교적 우수한 성능을 보였다. 그러나, 클래스 수가 적은 경우 중심점 기반 분류기가 좋은 성능을 보였으나, 학습집합이 작아지면서 두 분류기의 성능 차이는 없었으며, 클래스의 수가 많아지면서 나이브 베이지안 분류기가 더 우수한 성능을 보였다.

  • PDF

점진적 앙상블 SVM을 이용한 고객 분류 시스템 (Customer Classification System Using Incrementally Ensemble SVM)

  • 박상호;이종인;박선;강윤희;이주홍
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.190-192
    • /
    • 2003
  • 소비자의 신용 대출 규모가 점차 증가하면서 기업에서 고객의 신용 등급에 의한 정확한 고객 분류를 필요로 하고 있다 이를 위해 판별 분석과 신경망의 역전파(BP: Back Propagation)를 이용한 고객 분류 시스템이 연구되었다. 그러나, 판별 분석을 사용한 방법은 불규칙한 신용 거래의 성향을 보이는 비정규 분포의 고객 데이터의 영향으로 여러 개의 판별 함수와 판별점이 존재하여 분류 정확도가 떨어지는 단점이 있다. 신경망을 이용한 방법은 불규칙한 신용 거래의 성향을 보이는 고객 데이터에 의해서, 지역 최소점(Local Minima)에 빠져 최대의 분류 정확률을 보이는 분류자를 얻지 못하는 경우가 발생할 수 있다. 본 논문에서는 이러한 기존 연구의 분류 정확률을 저하시키는 단점을 해결하기 위해 SVM(Support Vector Machine)을 사용하여 고객의 신용 등급을 분류하는 방법을 제안한다. SVM은 SV(Support Vector)의 수에 의해서 학습 성능이 좌우되므로, 불규칙한 거래 성향을 보이는 고객에 대해서도 높은 차원으로의 매핑을 통하여, 효과적으로 학습시킬 수 있어 분류의 정확도를 높일 수 있다 하지만, SVM은 근사화 알고리즘(Approximation Algorithms)을 이용하므로 분류 정확도가 이론적인 성능에 미치지 못한다. 따라서, 본 논문은 점진적 앙상블 SVM을 사용하여, 기존의 고객 분류 시스템의 문제점을 해결하고 실제적으로 SVM의 분류 정확률을 높인다. 실험 결과는 점진적 앙상블 SVM을 이용한 방법의 정확성이 기존의 방법보다 높다는 것을 보여준다.

  • PDF

eCRM에서 고객 최적 분류 시스템에 관한 연구 (A Study on Customer Optimized Classification System in eCRM)

  • 이재훈;이성주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.58-61
    • /
    • 2004
  • 최근 기업들의 고객중심 마케팅 기법중 하나인 고객관계관리(CRM:Customer Relationship Management)가 인터넷의 발전으로 온라인화 되고 있으며 다양하게 발전되어 왔다. 가장 대두되고 있는 문제는 고객 분류를 객관적인 방법으로 어떻게 자동화할 수 있는가 이다. 본 논문은 고객 성향 분석과 개인화에서 얻어진 일련의 정보를 다시 한번 더 가공함으로써 고객 집단 편성을 최적화하고 이를 이용하여 고객을 최적으로 분류할 수 있는 시스템을 설계 및 구축하였다.

  • PDF

전자상거래에 적용 가능한 고객분류기 (A Customer Classifier for EC Mall)

  • 김선철;이준욱;이용준;류근호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (1)
    • /
    • pp.138-140
    • /
    • 1999
  • 분류기법은 과거데이터를 분석하여 새로운 데이터에 대한 예측에 사용되며, 결정트리 알고리즘을 많이 사용한다. 따라서, 이 기법은 전자상거래에서 DB 마케팅을 위해 데이터베이스에 저장되어 있는 고객데이터를 분석하여 암시적인 고객들의 행위규칙을 찾고, 예측하기 위하여 사용할 수 있다. 기존의 분류알고리즘들은 전자상거래에서 일반적인 연속형 고객데이터를 처리하는데는 많은 문제점을 가지고 있다. 이러한 문제를 해결하기 위하여 연속형 데이터를 범주형 데이터로 변환하는 알고리즘을 구현하였다. 이 논문은 전자상거래에 적용하기 위한 고객분류기로서 ID3 알고리즘에 1차원 클러스터링알고리즘을 결합하여 사용한다.

  • PDF

고객 공통 정보를 이용한 데이터마이닝 기반의 고객 분류 기법에 대한 연구 (Study of Customer Classification Algorithm Based on Data Mining Technology Using Customer Common Information)

  • 김영일;송재주;양일권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1883_1884
    • /
    • 2009
  • 자동검침 데이터를 이용하여 고객의 가상 부하패턴을 생성하고 회선 및 구간의 부하를 분석하는 연구가 활발히 진행되고 있다. 본 논문에서는 기존에 연구된 산업분류 별 평균 부하패턴을 이용하는 방법과 고객의 부하 형태 인덱스를 이용한 방법의 문제점을 살펴보고, 이를 개선하기 위한 방법으로 고객의 속성정보를 이용하여 고객을 분류하는 방법을 제안하였다.

  • PDF