• Title/Summary/Keyword: 고강도 강섬유보강콘크리트

Search Result 68, Processing Time 0.039 seconds

Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • Corbels are short cantilevers that project from the faces of a column and are a type of stress disturbed member, resisting both the ultimate shear force applied to them by the beam, and the ultimate horizontal force caused by shrinkage, temperature changes, and creep of the supported elements. Recently, as there have been an increase in the use of high-strength concrete and the concern about corrosion problems, lots of researches about hybrid reinforcing technique, applying strategically high performance reinforcements to the concrete elements, are performed. In this study, fiber reinforced high strength concrete corbels were constructed and tested for applying hybrid reinforcing technique to the corbels using steel fibers and headed bars. The results showed that the performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the steel fibers were added and the percentage of steel fibers was increased. In addition, the corbel specimens used headed bars as main tension ties showed superior load carrying capacities, stiffness, and ductility to the corbel specimens anchored main tension ties by welding to the transverse bars.

  • PDF

The Effect of Steel-Fiber Contents on the Compressive Stress-Strain Relation of Ultra High Performance Cementitious Composites (UHPCC) (UHPCC의 압축응력-변형률 관계에 대한 강섬유 혼입률의 영향)

  • Kang, Su-Tae;Ryu, Gum-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The effect of steel-fiber contents on the compressive behavior of ultra high performance cementitious composites (UHPCC) was studied to propose a compressive behavior model for UHPCC. The experiments considered fiber contents of 0~5 vol.% and the results indicated that compressive strength and corresponding strain as well as elastic modulus were improved as the fiber contents increased. Compared to the previous study results obtained from concrete with compressive strength of 100MPa or less, the reinforcement effect on strength showed similar tendency, while the effect on the strain and elastic modulus were much less. Strength, strain, and elastic modulus according to the fiber contents were presented as a linear function of fiber reinforcement index (RI). Fiber reinforcement in UHPCC had no influence on the shape of compressive behavioral curve. Considering its effect on compressive strength, strain, and elastic modulus, a compressive stress-strain relation for UHPCC was proposed.

Fire Resistance Performance for Hybrid Fiber Reinforced High Strength Concrete Column Member (하이브리드 섬유보강 고강도콘크리트 기둥부재의 내화성능)

  • Won, Jong-Pil;Jang, Chang-Il;Lee, Sang-Woo;Kim, Heung-Youl;Kim, Wan-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.827-832
    • /
    • 2008
  • This study evaluated fire resistance performance for hybrid (polypropylene+steel) fiber reinforced high strength concrete column. Full-size columns were constructed and tested with or without fibers using ISO-834 fire curve. As the result of test, Control specimen occurred serious spalling and indicated rapidly internal temperature increasing. Specimen with polypropylene fiber occurred not spalling but steady internal temperature increasing. Specimen with hybrid fiber occurred not spalling as well as does not propagated temperature distribution. Therefore, hybrid fiber reinforced column specimen indicated a good fire resistance performance than other cases.

Fire Resistance Performance for Fiber Reinforced High Strength Concrete Column Member (폴리프로필렌 및 강섬유 보강 고강도 콘크리트 기둥부재의 내화성능)

  • Jang, Chang-Il;Lee, Sang-Woo;Choi, Min-Jung;Kim, Joon-Mo;Kim, Heung-Youl;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.457-460
    • /
    • 2008
  • This study evaluated fire resistance performance for polypropylene/steel fiber reinforced high strength concrete column. Full-size columns were constructed and tested with or without fibers using ISO-834 fire curve. As the result of test, non-fiber high strength concrete column specimen occurred serious spalling and indicated rapidly internal temperature increase. Specimen with polypropylene fiber occurred not spalling. Specimen with hybrid fiber occurred not spalling as well as does not propagated temperature propagation. Therefore, hybrid fiber reinforced column specimen indicated a good fire resistance performance than other cases.

  • PDF

Shear Behavior of Prestressed Steel Fiber-Reinforced Concrete at Crack Interfaces (프리스트레스가 도입된 강섬유보강콘크리트의 균열면 전단거동)

  • Kal, Kyoung Wan;Hwang, Jin Ha;Lee, Deuck Hang;Kim, Kang Su;Choi, Il Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.78-88
    • /
    • 2012
  • Although structural concrete is well known for its good economic efficiency, it has limits of structural performance due to the low tensile strength, for which new structural members utilizing various concrete composite materials have been developed. Steel Fiber-Reinforced Concrete(SFRC) has great tensile strength, which is the one of the excellent composite material to complement the weakness of concrete, and it is also considered as a good alternative to prevent the explosive failure of high strength concrete under fire. Also, prestressed concrete members are of great advantages to long span structures and have greater shear strength compared to conventional reinforced concrete members. In this research, thus, a total of 22 direct shear test specimens were fabricated and tested to understand the shear behavior of Steel Fiber-Reinforced Prestressed Concrete(SFR-PSC) members, in which SFRC members combined with prestressing method. Based on the test results, the constitutive equations of shear behavior at crack interfaces were proposed, which provided good estimation on the shear behavior of the SFR-PSC direct shear test specimens.

Compressive Strength and Fire Resistance Performance of High Strength Concrete with Recycled Fiber Power from Fiber-Reinforced Plastics (재활용 FRP 미분말을 혼입한 고강도 콘크리트의 압축강도 및 내화성능)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • Increasing of waste FRP (fiber reinforced plastics) has caused environmental problems. Recently, the technology of making fibers from waste FRP, which can be used to reinforce the concrete, was developed and the reinforced concretes were tested to study the structural performance. The purpose of this study is to investigate the effect of the powder, obtained together with F-fiber from the waste FRP, on the compressive strength and the fire resistance performance as in the high strength concrete. Strength tests show that the use of recycled FRP powder does not reduce the compressive strength of high strength concrete if the volume fraction of FRP powder is less than 0.7%. Electric furnace test results also show that the use of recycled FRP powder may increase the fire resistance performance of high strength concrete significantly.

The Effects of Steel-Fiber Reinforcement on High Strength Concrete Replaced with Recycled Coarse Aggregates More Than 60% (순환굵은골재 60% 이상 사용한 고강도 콘크리트에 대한 강섬유 보강 효과)

  • Kim, Yoon-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.404-417
    • /
    • 2016
  • The purpose of this study is to examine the extent to which the deterioration in strength of high strength concrete of 60MPa replaced by a large amount of recycled coarse aggregates (more than 60% to 100% of replacement ratio) could be recovered with steel fiber reinforcement through material compressive strength test and shear failure test on short and middle beams and then to offer useful data for aggregate supply system of a sustainable resource circulation type. This study first examined the results of previous related tests. The results of the material compressive strength tests confirmed that when using a combination of steel fiber reinforcements of volumn ratio 0.75% and high quality recycled coarse aggregates with an water absorption rate within 2.0%, the strength characteristics of high strength concrete of 60MPa level were not only restored to the strength level of concrete made with natural aggregates, but also showed superior ductility. And the shear failure tests on short and middle beams using recycled coarse aggregates more than 60% with shear span to depth ratio (a/d) of 2 and 4 controlled by shear forces mainly confirmed that effects of superior shear strength increase and ductile behavior characteristics were showed by steel fiber reinforcements.

An Experimental Study on the Development and Application of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 개발 및 응용에 관한 실험적 연구)

  • 김무한;김진만;남상일
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.142-151
    • /
    • 1994
  • The purpose of this study is to investigate anti analyze the effect of iength of steel fiber and concrete admixt.ure such as iilica fume and fly ash on the workability arid engineering properties cbf steel fiber reinforced concxte (SFRC). As the results the follows art: found. First, it is poss ible to make steel fiber reinforced concrete having the consistency of IOcm slump and 28 days compressive strength of $600{\;}kgf/\textrm{m}^2$ by adopting low water binder ratios arid using :uperplasticizer. Second, the conipresslve and tensile strength of SWKC containing silica fume and fly ash is lower than those of plain concrete in the age after 28 days, but higher in the age after 28 days. Finally, tensde strength of SFHC is higher than that of plain concrete, and so adding the steel fibers in concrete increases the toughness.

A Study on the Fire Resistance and Mechanical Properties of High Strength Concrete Mixed Hybrid Fibers (하이브리드 섬유 혼입 고강도 콘크리트의 내화 및 역학적 특성에 관한 연구)

  • Shin, Young-Suk;Li, Zhi-Min;Yoo, Myung-Hwan;Cho, Cheol-Hee;Kim, Jeong-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.67-75
    • /
    • 2010
  • In this paper, by using steel fiber, polypropylene fiber and these two hybrid fibers, the fire resistance performance and explosive properties of High Strength Concrete (HSC) with specified compressive strength of 40MPa are discussed. The paper also examines the bending resistance of the beam and the shearing resistance properties of non-reinforced HSC beam. This research helps to clarify the fire resistance of fiber HSC and its anti-explosion methods. The test results show that crack generation, explosion and carbonization can be effectively restrained when HSC is mixed with hybrid fibers under high temperature; furthermore, the maximum internal force and ductility are increased and the initial cracking can be restrained in the mechanical test.

Flexural Strength and Deflection Evaluation for FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber (이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 강도 및 처짐 평가)

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Shin, Hyun-Oh;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.413-420
    • /
    • 2011
  • The test results of high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers, were compared with the prediction results of codes, guidelines and models proposed by researchers. The theoretical calculation based on the ultimate strength method of the KCI and ACI Code underestimated the ultimate moments of FRP bar-reinforced beams without fibers. The models proposed by ACI 544.4R and Campione predicted the ultimate moment capacities inaccurately for the FRP bar-reinforced beam with steel fibers, because these models do not consider the increased ultimate compressive strain of fiber reinforced concrete. Bischoff's deflection model predicted the service load deflections reasonably well, while the deflection model of ACI Committee 440 underestimated the deflection of FRP bar-reinforced beams. Because the ACI 440 expression, used to predict member deflection, cannot directly apply to the beams reinforced with different types of reinforcing bars, an alternative method to estimate the deflections of beams with different types of reinforcing bars using the ACI 440 expression was proposed. In addition, Bischoff's approach for computing deflection was extended to include deflection after yielding of the steel reinforcement in the beams reinforced with steel and FRP bars simultaneously.