• Title/Summary/Keyword: 계층 그래프 모델

Search Result 47, Processing Time 0.026 seconds

An Efficient RDF Query Validation for Access Authorization in Subsumption Inference (포함관계 추론에서 접근 권한에 대한 효율적 RDF 질의 유효성 검증)

  • Kim, Jae-Hoon;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.422-433
    • /
    • 2009
  • As an effort to secure Semantic Web, in this paper, we introduce an RDF access authorization model based on an ontology hierarchy and an RDF triple pattern. In addition, we apply the authorization model to RDF query validation for approved access authorizations. A subscribed SPARQL or RQL query, which has RDF triple patterns, can be denied or granted according to the corresponding access authorizations which have an RDF triple pattern. In order to efficiently perform the query validation process, we first analyze some primary authorization conflict conditions under RDF subsumption inference, and then we introduce an efficient query validation algorithm using the conflict conditions and Dewey graph labeling technique. Through experiments, we also show that the proposed validation algorithm provides a reasonable validation time and when data and authorizations increase it has scalability.

Design and Implementation of Mobile Continuous Blood Pressure Measurement System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 모바일 연속 혈압 측정 시스템의 설계 및 구현)

  • Kim, Seong-Woo;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1469-1476
    • /
    • 2022
  • Recently, many researches have been conducted to estimate blood pressure using ECG(Electrocardiogram) and PPG(Photoplentysmography) signals. In this paper, we designed and implemented a mobile system to monitor blood pressure in real time by using 1-D convolutional neural networks. The proposed model consists of deep 11 layers which can learn to extract various features of ECG and PPG signals. The simulation results show that the more the number of convolutional kernels the learned neural network has, the more detailed characteristics of ECG and PPG signals resulted in better performance with reduced mean square error compared to linear regression model. With receiving measurement signals from wearable ECG and PPG sensor devices attached to the body, the developed system receives measurement data transmitted through Bluetooth communication from the devices, estimates systolic and diastolic blood pressure values using a learned model and displays its graph in real time.

A Multi-Strategic Mapping Approach for Distributed Topic Maps (분산 토픽맵의 다중 전략 매핑 기법)

  • Kim Jung-Min;Shin Hyo-phil;Kim Hyoung-Joo
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.114-129
    • /
    • 2006
  • Ontology mapping is the task of finding semantic correspondences between two ontologies. In order to improve the effectiveness of ontology mapping, we need to consider the characteristics and constraints of data models used for implementing ontologies. Earlier research on ontology mapping, however, has proven to be inefficient because the approach should transform input ontologies into graphs and take into account all the nodes and edges of the graphs, which ended up requiring a great amount of processing time. In this paper, we propose a multi-strategic mapping approach to find correspondences between ontologies based on the syntactic or semantic characteristics and constraints of the topic maps. Our multi-strategic mapping approach includes a topic name-based mapping, a topic property-based mapping, a hierarchy-based mapping, and an association-based mapping approach. And it also uses a hybrid method in which a combined similarity is derived from the results of individual mapping approaches. In addition, we don't need to generate a cross-pair of all topics from the ontologies because unmatched pairs of topics can be removed by characteristics and constraints of the topic maps. For our experiments, we used oriental philosophy ontologies, western philosophy ontologies, Yahoo western philosophy dictionary, and Yahoo german literature dictionary as input ontologies. Our experiments show that the automatically generated mapping results conform to the outputs generated manually by domain experts, which is very promising for further work.

Fabric Mapping and Placement of Field Programmable Stateful Logic Array (Field Programmable Stateful Logic Array 패브릭 매핑 및 배치)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, the Field Programmable Stateful Logic Array (FPSLA) was proposed as one of the most promising system integration technologies which will extend the life of the Moore's law. This work is the first proposal of the FPSLA design automation flow, and the approaches to logic synthesis, synchronization, physical mapping, and automatic placement of the FPSLA designs. The synchronization at each gate for pipelining determines the x-coordinates of cells, and reduces the placement to 1-dimensional problems. The objective function and its gradients for the non-linear optimization of the net length and placement density have been remodeled for the reduced global placement problem. Also, a recursive algorithm has been proposed to legalize the placement by relaxing the density overflow of bipartite bin groups in a top-down hierarchical fashion. The proposed model and algorithm are implemented, and validated by applying them to the ACM/SIGDA benchmark designs. The output state of a gate in an FPSLA needs to be duplicated so that each fanout gate can be connected to a dedicated copy. This property has been taken into account by merging the duplicated nets into a hyperedge, and then, splitting the hyperedge into edges as the optimization progresses. This yields additional 18.4% of the cell count reduction in the most dense logic stage. The practicality of the FPSLA can be further enhanced primarily by incorporating into the logic synthesis the constraint to avoid the concentrated fains of gates on some logic stages. In addition, an efficient algorithm needs to be devised for the routing problem which is based on a complicated graph. The graph models the nanowire crossbar which is trimmed to be embedded into the FPSLA fabric, and therefore, asymmetric. These CAD tools can be used to evaluate the fabric efficiency during the architecture enhancement as well as automate the design.

Structure Analysis of Ship′s Collision Causes using Fuzzy Structural Modeling (퍼지구조모델을 이용한 선박충돌사고 원인의 구조분석)

  • Yang, Won-Jae
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • The prevention of marine accidents has been a important topic in marine society for long time, and various safety policies and countermeasures have been developed and applied to prevent those accidents. In spite of these efforts, however, significant marine accidents have taken place intermittently. Ship is being operated under a highly dynamic environments, and many factors are related with ship's collision, whose factors are interacting. So, the analysis on ship's collision causes are very important to prepare countermeasures which will ensure the safe navigation. This study analysed the ship's collision data over the past 10 years(1991-2000), which is compiled by Korea Marine Accidents Inquiry Agency. The analysis confirmed that‘ship's collision’is occurred most frequently and the cause is closely related with human factor. The main purpose of this study is to analyse human factor. For this, the structure of human factor is analysed by the questionnaire methodology. Marine experts were surveyed based on major elements that were extracted from the human factor affecting to ship's collision. FSM has been widely adopted in modeling a dynamic system which is composed of human factors. Then, the structure analysis on the causes of ship's collision using FSM are performed. This structure model could be used in understanding and verifying the procedure of real ship's collision. Furthermore it could be used as the model to prevent ship's collision and reduce marine accidents.

Personalized Session-based Recommendation for Set-Top Box Audience Targeting (셋톱박스 오디언스 타겟팅을 위한 세션 기반 개인화 추천 시스템 개발)

  • Jisoo Cha;Koosup Jeong;Wooyoung Kim;Jaewon Yang;Sangduk Baek;Wonjun Lee;Seoho Jang;Taejoon Park;Chanwoo Jeong;Wooju Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.323-338
    • /
    • 2023
  • TV advertising with deep analysis of watching pattern of audiences is important to set-top box audience targeting. Applying session-based recommendation model(SBR) to internet commercial, or recommendation based on searching history of user showed its effectiveness in previous studies, but applying SBR to the TV advertising was difficult in South Korea due to data unavailabilities. Also, traditional SBR has limitations for dealing with user preferences, especially in data with user identification information. To tackle with these problems, we first obtain set-top box data from three major broadcasting companies in South Korea(SKB, KT, LGU+) through collaboration with Korea Broadcast Advertising Corporation(KOBACO), and this data contains of watching sequence of 4,847 anonymized users for 6 month respectively. Second, we develop personalized session-based recommendation model to deal with hierarchical data of user-session-item. Experiments conducted on set-top box audience dataset and two other public dataset for validation. In result, our proposed model outperformed baseline model in some criteria.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.